PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antibacterial Ti-Cu and Ta-Cu coatings for endoprostheses applied by magnetron sputtering onto Ti6Al4V alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents new results of manufacturing coatings by magnetron sputtering to improve the functional properties of joint endoprostheses. The antibacterial properties of Ti-Cu and Ta-Cu coatings deposited by DC multi-magnetron sputtering on Ti6Al4V alloy substrates subjected of gas-abrasive treatment have been investigated. The roughness of the substrate was measured by optical profilometry. The coating hardness and elastic modulus were estimated by nanoindentation methods; the adhesion characteristics were assessed by Rockwell test. Scanning electron microscopy with energy-dispersive X-ray analysis verified the application of coatings with 25 at.% Cu, at thicknesses of 2 μm and 10 μm to roughened Ti6Al4V alloy. All coatings demonstrated sufficient adhesion, whereas Ta-Cu coatings generally revealed higher hardness, while the elastic modulus decreased with increasing coating thickness. Staphylococcus aureus strains were used for in vitro study of the antibacterial properties of Ti-Cu and Ta-Cu coatings. The largest zones of inhibition of bacteria S. aureus 23 mm were observed for 10 μm Ta-Cu coating thickness. The release dynamics of Cu ions from Ta-Cu and Ti-Cu coatings into physiological solution analyzed over seven days via inductively coupled plasma mass spectrometry, matched the inhibition zone growth. The Ti-Cu and Ta-Cu coatings of 2 μm thickness provided weaker antibacterial effect. The optimal parameters of magnetron sputtering of antibacterial Ti-Cu and Ta-Cu coatings on Ti6Al4 alloy substrates were selected. These findings support the potential of these coatings in developing endoprosthesis implants with enhanced antimicrobial and wear-resistant properties.
Rocznik
Strony
23--41
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • School of Digital Technologies and Artificial Intelligence, D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
  • School of Digital Technologies and Artificial Intelligence, D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
  • Smart Engineering Competence Centre, D. Serikbayev East Kazakhstan Technical University, Ust- Kamenogorsk, Kazakhstan
  • Smart Engineering Competence Centre, D. Serikbayev East Kazakhstan Technical University, Ust- Kamenogorsk, Kazakhstan
  • Smart Engineering Competence Centre, D. Serikbayev East Kazakhstan Technical University, Ust- Kamenogorsk, Kazakhstan
  • Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
  • E.O. Paton Electric Welding Institute of NAS of Ukraine, Kyiv, Ukraine
autor
  • Smart Engineering Competence Centre, D. Serikbayev East Kazakhstan Technical University, Ust- Kamenogorsk, Kazakhstan
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, University of Science and Technology, Wrocław, Poland
Bibliografia
  • 1. R. Gotadki, Medical Implant Market Research Report, 2021.
  • 2. C. Pabinger, H. Lothaller, N. Portner, A. Geissler, Projections of hip arthroplasty in OECD countries up to 2050, HIP Int. 28 (2018) 498–506. https://doi.org/10.1177/1120700018757940
  • 3. W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact. Mater. 2 (2017) 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007
  • 4. J. Raphel, M. Holodniy, S.B. Goodman, S.C. Heilshorn, Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants, Biomaterials. 84 (2016) 301–314. https://doi.org/10.1016/j.biomaterials.2016.01.016
  • 5. Swiss National Hip & Knee Joint Registry Report, Swiss Society of Orthopaedics and Traumatology, Basel, 2021.
  • 6. B. Lindeque, Z. Hartman, A. Noshchenko, M. Cruse, Infection After Primary Total Hip Arthroplasty, Orthopedics. 37 (2014) 257–265. https://doi.org/10.3928/01477447-20140401-08
  • 7. C. Guder, S. Gravius, C. Burger, D.C. Wirtz, F.A. Schildberg, Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System, Front. Immunol. 11 (2020). https://doi.org/10.3389/fimmu.2020.00058
  • 8. B.H. Kapadia, R.A. Berg, J.A. Daley, J. Fritz, A. Bhave, M.A. Mont, Periprosthetic joint infection, Lancet. 387 (2016) 386–394. https://doi.org/10.1016/S0140-6736(14)61798-0
  • 9. S. Hogan, N.T. Stevens, H. Humphreys, J.P. O’Gara, E. O’Neill, Current and Future Approaches to the Prevention and Treatment of Staphylococcal Medical Device-Related Infections, Curr. Pharm. Des. 21 (2014) 100–113. https://doi.org/10.2174/1381612820666140905123900
  • 10. Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, Antibacterial surface design of biomedical titanium materials for orthopedic applications, J. Mater. Sci. Technol. 78 (2021) 51–67. https://doi.org/10.1016/j.jmst.2020.10.066
  • 11. H.Y. Ahmadabadi, K. Yu, J.N. Kizhakkedathu, Surface modification approaches for prevention of implant associated infections, Colloids Surf. B Biointerfaces. 193 (2020) 111116. https://doi.org/10.1016/j.colsurfb.2020.111116
  • 12. D. Alontseva, B. Azamatov, Y. Safarova (Yantsen), S. Voinarovych, G. Nazenova, A Brief Review of Current Trends in the Additive Manufacturing of Orthopedic Implants with Thermal Plasma-Sprayed Coatings to Improve the Implant Surface Biocompatibility, Coatings. 13 (2023) 1175. https://doi.org/10.3390/coatings13071175
  • 13. А.А. Meleshko, A.G. Afinogenova, G.E. Afinogenov, A.A. Spiridonova, V.P. Tolstoy, Аntibacterial inorganic agents: efficiency of using multicomponent systems, Russ. J. Infect. Immun. 10 (2020) 639–654. http://dx.doi.org/10.15789/2220-7619-AIA-1512
  • 14. V. Vishwakarma, G. Kaliaraj, K. Amirtharaj Mosas, Multifunctional Coatings on Implant Materials—A Systematic Review of the Current Scenario, Coatings. 13 (2022) 69. https://doi.org/10.3390/coatings13010069
  • 15. J. Wilson, Metallic biomaterials, in: Fundamental Biomaterials: Metals, Elsevier, 2018, pp. 1–33. https://doi.org/10.1016/B978-0-08-102205-4.00001-5
  • 16. D. Alontseva, Y. Safarova (Yantsen), S. Voinarovych, A. Obrosov, R. Yamanoglu, F. Khoshnaw, et al., Biocompatibility and Corrosion of Microplasma-Sprayed Titanium and Tantalum Coatings versus Titanium Alloy, Coatings. 14 (2024) 206. https://doi.org/10.3390/coatings14020206
  • 17. Z. Ding, Q. Zhou, Y. Wang, Z. Ding, Y. Tang, Q. He, Microstructure and properties of monolayer, bilayer and multilayer Ta2O5-based coatings on biomedical Ti-6Al-4V alloy by magnetron sputtering, Ceram. Int. 47 (2021) 1133–1144. https://doi.org/10.1016/j.ceramint.2020.08.230
  • 18. T.C. Senocak, K.V. Ezirmik, F. Aysin, N. Simsek Ozek, S. Cengiz, Niobium-oxynitride coatings for biomedical applications: Its antibacterial effects and in-vitro cytotoxicity, Mater. Sci. Eng. C 120 (2021) 111662. https://doi.org/10.1016/j.msec.2020.111662
  • 19. S. Zhao, S. Liu, Y. Xue, N. Li, K. Xu, W. Qiu, et al., Microstructure and properties of monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings deposited on biomedical Ti-6Al-4V alloy by magnetron sputtering, Coatings 13 (2023) 1234. https://doi.org/10.3390/coatings13071234
  • 20. V. Stranak, H. Wulff, P. Ksirova, C. Zietz, S. Drache, M. Cada, et al., Ionized vapor deposition of antimicrobial Ti–Cu films with controlled copper release, Thin Solid Films 550 (2014) 389–394. https://doi.org/10.1016/j.tsf.2013.11.001
  • 21. A. Bahrami, J.P. Álvarez, O. Depablos‐Rivera, R. Mirabal‐Rojas, A. Ruíz‐Ramírez, S. Muhl, S.E. Rodil, Compositional and Tribo‐Mechanical Characterization of Ti‐Ta Coatings Prepared by Confocal Dual Magnetron Co‐Sputtering, Adv. Eng. Mater. 20(3) (2018). https://doi.org/10.1002/adem.201700687
  • 22. G.A. Norambuena, R. Patel, M. Karau, C.C. Wyles, P.J. Jannetto, K.E. Bennet, et al., Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study, Clin. Orthop. Relat. Res. 475(3) (2017) 722–32. https://doi.org/10.1007/s11999-016-4713-7
  • 23. D. Wojcieszak, M. Osekowska, D. Kaczmarek, B. Szponar, M. Mazur, P. Mazur, et al., Influence of Material Composition on Structure, Surface Properties and Biological Activity of Nanocrystalline Coatings Based on Cu and Ti, Coatings 10(4) (2020) 343.
  • 24. A. Bahrami, C.F. Onofre Carrasco, A.D. Cardona, T. Huminiuc, T. Polcar, S.E. Rodil, Mechanical properties and microstructural stability of CuTa/Cu composite coatings, Surf. Coat. Technol. 364 (2019) 22–31. https://doi.org/10.1016/j.surfcoat.2019.02.072
  • 25. A. Wang, I.P. Jones, G. Landini, J. Mei, Y.Y. Tse, Y.X. Li, et al., Backscattered electron imaging and electron backscattered diffraction in the study of bacterial attachment to titanium alloy structure, J. Microsc. 270(1) (2018) 53–63. https://doi.org/10.1111/jmi.12649
  • 26. E.A. Lewallen, W.H. Trousdale, R. Thaler, J.J. Yao, W. Xu, J.M. Denbeigh, et al., Surface Roughness of Titanium Orthopedic Implants Alters the Biological Phenotype of Human Mesenchymal Stromal Cells., Tissue Eng. Part A 27(23–24) (2021) 1503–16. https://doi.org/10.1089/ten.TEA.2020.0369
  • 27. B. Jahani, X. Wang, The Effects of Surface Roughness on the Functionality of Ti13Nb13Zr Orthopedic Implants, Biomed. J. Sci. Tech. Res. 38(1) (2021). https://doi.org/10.26717/BJSTR.2021.38.006104
  • 28. I. Ilievska, V. Ivanova, D. Dechev, N. Ivanov, M. Ormanova, M.P. Nikolova, et al., Influence of Thickness on the Structure and Biological Response of Cu-O Coatings Deposited on cpTi, Coatings 14(4) (2024) 455. https://doi.org/10.3390/coatings14040455
  • 29. C. Zietz, A. Fritsche, B. Finke, V. Stranak, M. Haenle, R. Hippler, et al., Analysis of the Release Characteristics of Cu-Treated Antimicrobial Implant Surfaces Using Atomic Absorption Spectrometry, Bioinorg. Chem. Appl. 2012 (2012) 1–5. https://doi.org/10.1155/2012/850390
  • 30. M. Walczak, K. Pasierbiewicz, M. Szala, Effect of Ti6Al4V Substrate Manufacturing Technology on the Properties of PVD Nitride Coatings, Acta Phys. Pol. A 142 (6) (2023) 723. https://doi.org/10.12693/APhysPolA.142.723
  • 31. M. Jażdżewska, B. Majkowska-Marzec, A. Zieliński, R. Ostrowski, A. Frączek, G. Karwowska, J.M. Olive, Mechanical Properties and Wear Susceptibility Determined by Nanoindentation Technique of Ti13Nb13Zr Titanium Alloy after “Direct Laser Writing”. Materials, 16(13), (2023) 4834. https://doi.org/10.3390/ma16134834
  • 32. Y.C. Liu, T.W. Xu, B.Q. Su, B.J. Lv, H. Wang, Effect of strontium-doped coating prepared by microarc oxidation and hydrothermal treatment on apatite induction ability of Ti13Nb13Zr alloy in vitro, J. Mater. Res. 37 (16) (2022) 2657-2685. 10.1557/s43578-022-00626-x
  • 33. K. Piotrowska, M. Madej, J. Kowalczyk, K. Radoń-Kobus, The ınfluence of envıronmental condıtıons on the trıbologıcal propertıes of the Ti13Nb13Zr alloy, Metalurgija, 63 (1) (2024) 53-56.
  • 34. S. Chowdhury, N. Arunachalam, Surface functionalization of additively manufactured titanium alloy for orthopaedic implant applications, J. Manuf. Process., 102 (2023) 387-405. 10.1016/j.jmapro.2023.07.015
  • 35. V. Hutsaylyuk, M. Wachowski, B. Kovalyuk, V. Mocharskyi, O. Sitkar, L. Śnieżek, J. Zygmuntowicz, Mechanical properties of titanium grade 1 after laser shock wave treatment. Advances in Materials Science, 23(4) (2023) 48-61. https://doi.org/10.2478/adms-2023-0022
  • 36. M. Jażdżewska, B. Majkowska-Marzec, R. Ostrowski, J.M. Olive, Influence of surface laser treatment on mechanical properties and residual stresses of titanium and its alloys. Adv. Sci. Technol. Res. J., 17 (6) (2023) 27-38. https://doi.org/10.12913/22998624/172981
  • 37. Implants for surgery - Metallic materials - Part 3: Wrought titanium 6-aluminium 4-vanadium alloy, ISO.org, 2016.
  • 38. B.N. Azamatov, D.L. Alontseva, A.A. Borisov, B. Maratuly, V.B. Ogay, A.A. Kurmanbaev, Magnetron sputtering on titanium alloy substrates of copper films with antibacterial properties against pseudomonas and staphylococcus, Bulletin of D. Serikbayev EKTU. 3 (2022) 40-51. https://doi.org/10.51885/1561-4212_2022_3_40
  • 39. W.C. Oliver, G.M. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583. https://doi.org/10.1557/JMR.1992.1564
  • 40. E. Avcu, Y. Yıldıran Avcu, F.E. Baştan, M.A.U. Rehman, F. Üstel, A.R. Boccaccini, Tailoring the surface characteristics of electrophoretically deposited chitosan-based bioactive glass composite coatings on titanium implants via grit blasting, Prog. Org. Coat. 123 (2018) 362–73. https://doi.org/10.1016/j.porgcoat.2018.07.021
  • 41. W. Qin, L.Fu,, T. Xie, J. Zhu, W.Yang, D. Li, L. Zhou, Abnormal hardness behavior of Cu-Ta films prepared by magnetron sputtering, J. Alloys Compd. 708 (2017) 1033-1037.
  • 42. G.Skordaris, K. D. Bouzakis, T.Kotsanis, P. Charalampous, E. Bouzakis, O. Lemmer, S. Bolz, Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools, Surf. Coat. Technol. 307 (2016) 452-460.
  • 43. Verein-Deutscher-Ingenieure 1992 Daimler Benz Adhesion Test VDI 3198 (Dusseldorf: VDI Verlag) p. 7.
  • 44. V. Kuibida, P.Kokhanets, V. Lopatynska, Mechanism of strengthening the skeleton using plyometrics, J. Phys. Educ. Sport. 21 (7) (2021). https://doi.org/10.7752/jpes.2021.03166
  • 45. N. Hezil, L. Aissani, M. Fellah, M. Abdul Samad, A. Obrosov, C. Timofei, E. Marchenko, Structural, and tribological properties of nanostructured α + β type titanium alloys for total hip, J. Mater. Res. Technol. 19 (2022) 3568–3578. https://doi.org/10.1016/j.jmrt.2022.06.042
  • 46. Biological evaluation of medical devices, ISO 10993, 2009. Available from: IHS.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-787ca853-5130-4dd7-b61c-b78ed20f7953
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.