Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sorption capacities of low-moor peats and Neogene clays from the overburden of lignite beds in Central Poland for Cr(III) ions as chloride and metalorganic complex ions have been investigated. The binding mechanisms and sorption parameters were determined based on the Freundlich and Langmuir nonlinear sorption isotherms. The sorption capacities of studied materials for Cr(III) ions depended on their properties (porosity, average pore diameters, specific surface area and content of Fe hydroxyoxides) as well as charge of Cr(III) ions, functional groups and their diagonal lengths. Cr(III) ions from chlorides were bound onto sorbents via Coulomb attraction and by Fe hydroxy-oxides. However the complex Cr(III) ions were bound to the sorbent surface via hydrogen bonds between the dye -OH groups and =O of the sorbent functional groups. The equation parameters of sorption isotherms indicate cooperative heterogeneous adsorption at low Cr(III) concentrations and chemisorption at high Cr(III) concentrations
Czasopismo
Rocznik
Tom
Strony
5--22
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
- Opole University, Department of Land Protection, ul. Oleska 22, 45-052 Opole, Poland
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
- Opole University, Department of Land Protection, ul. Oleska 22, 45-052 Opole, Poland
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Bibliografia
- [1] Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.
- [2] KYZIOŁ-KOMOSIŃSKA J., KUKUŁKA L., Application of minerals co-occurring in brown coal deposits to removal of heavy metals from water and wastewater, Works and Studies 75, Polish Academy of Sciences, Zabrze 2008 (in Polish).
- [3] KOTAŚ J., STASICKA Z., Chromium occurrence in the environment and methods of its speciation, Environ. Pollut., 2000, 107, 263.
- [4] ZAYED A.M., TERRY N., Chromium in the environment: factors affecting biological remediation, Plant Soil, 2003, 249, 139.
- [5] BABEL S., KURNIAWAN T.A., Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 2004, 54 (7), 951.
- [6] CRINI G., Non-conventional low-cost adsorbents for dye removal: A review, Bioresource Technol., 2006, 97, 1061.
- [7] DĄBEK L., OZIMINA E., PICHETA-OLEŚ A., Dye removal efficiency of virgin activated carbon and activated carbon regenerated with fenton’s reagent, Environ. Prot. Eng., 2012, 38 (1), 5.
- [8] TURAN N.G., MESCI B., Adsorption of copper(II) and zinc(II) ions by various agricultural by-products. Experimental studies and modelling, Environ. Prot. Eng., 2011, 37 (4), 143.
- [9] VIRARAGHAVAN T., RANA S.M., Treatment of septic tank effluent in a peat filter, Int. J. Environ. Stud., 1991, 37 (3), 213.
- [10] RANA S., VIRARAGHAVAN T., Use of peat in septic tank effluent treatment – column studies, Water Pollut. Res. J. Can., 1987, 22 (3), 491.
- [11] RAMAKRISHNA K.R., VIRARAGHAVAN T., Dye removal using low cost adsorbents, Water Sci. Technol., 1997, 36 (2–3), 189.
- [12] ALLEN S.J., MCKAY G., KHADER K.Y.H., Multi-component sorption isotherms of basic dyes onto peat, Environ. Pollut., 1988, 52, 39.
- [13] KYZIOŁ J., Effect of physical properties and cation exchange capacity on sorption of heavy metals onto peats, Pol. J. Environ. Stud., 2002, 11 (6), 713.
- [14] HOBBS N.B., Mire morphology and the properties and behaviour of some British and foreign peats, Q. J. Eng. Geol. Hydroge., 1986, 19, 7.
- [15] ILNICKI P., Peatlands and peat, Wydawnictwo Akademii Rolniczej w Poznaniu, Poznań 2002 (in Polish).
- [16] Handbook of Clay Science, F. Bergaya, B.K.G. Theng, G. Lagaly (Eds.), Elsevier, Amsterdam 2006.
- [17] Mineral sorbents of Poland, Z. Kłapyta, W. Żabiński (Eds.), Wydawnictwo AGH, Cracow 2008 (in Polish).
- [18] JARADAT Q.M., MASSADEH A.M., ZAITOUN M.A., MAITAH B.M., Fractionation and sequential ex-traction of heavy metals in the soil of scrapyard of discarded vehicles, Environ. Monit. Assess., 2006, 112 (1–3), 197.
- [19] LESVEN L., LOURINO-CABANA B., BILLON G., PROIX N., RECOURT P., OUDDANE B., FISCHER J.C., BOUGHRIET A., Water-quality diagnosis and metal distribution in a strongly polluted zone of Deûle River (Northern France), Water Air Soil Pollut., 2009, 198, 31.
- [20] SOČO E., KALEMBKIEWICZ J., Investigations on Cr mobility from coal fly ash, Fuel, 2009, 88, 1513.
- [21] TWARDOWSKA I., KYZIOL J., Sorption of metals onto natural organic matter as a function of complexation and adsorbent-adsorbate contact mode, Environ. Int., 2003, 28, 783.
- [22] TESSIER A., CAMPBELL P.G.C., BISSON M., Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 1979, 51, 844.
- [23] KERSTEN M., FÖRSTNER U., Speciation of trace elements in sediments, [in:] Trace element speciation: analytical methods and problems, G.E. Batley (Ed.), CRC Press Inc, Boca Raton, Florida, 1989, 245.
- [24] FOO K.Y., HAMEED B.H., Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 2010, 156 (1), 2.
- [25] KUMAR K.V., SIVANESAN S., Prediction of optimum sorption isotherm: Comparison of linear and non-linear method, J. Hazard. Mater., 2005, 126, 198.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-787bfe41-0a65-40a7-bf42-a50661212c2f