PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of Waste Toothbrush Fiber on Strength and Freezing–Thawing Behavior in High Plasticity Clay

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of waste materials in civil engineering applications has gained importance nowadays. Consuming limited natural resources and increasing waste disposal costs have led researchers to evaluate waste materials for different geotechnical applications. In this respect, some waste materials are used as reinforcement in soils to improve their engineering properties. The main objective of this paper was to investigate the usability of waste polypropylene fiber as a reinforcement material in high plasticity fine-grained soils. For this purpose, waste toothbrush bristle (WTB) was used as a polypropylene fiber reinforcement material and added to fine-grained soil at ratios of 0.2%, 0.4%, 0.6% and 0.8% by dry total weight. The effect of WTB on freezing–thawing behavior and unconfined compression strength of unreinforced and reinforced clayey soil was evaluated. The results indicated that addition of WTB to high plasticity clay improved its behavior against freezing–thawing. Also, undrained shear strength increases with respect to increment in WTB ratio.
Wydawca
Rocznik
Strony
15--21
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
  • Technical Vocational School of Higher Education, Ataturk University, Erzurum, Turkey
  • Technical Vocational School of Higher Education, Ataturk University, Erzurum, Turkey
  • Civil Engineering Department, Engineering Faculty, Ataturk University, Erzurum, Turkey
Bibliografia
  • [1] Tulek, M. (2007). A study of the use of chemical waste gypsums in soil stabilization. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü (Doctoral dissertation, Yüksek lisans Tezi).[in Turkish].
  • [2] Coruh E., Hinisoglu, S., Kocakerim, M., Arasan, S., Oltulu, M. (2013). Investigation of the usage of borogypsum in the subbase course as a stabilization material. EÜFBED – The Graduate School of Natural and Applied Sciences Journal, 6(2), 221-231.
  • [3] Kütük-Sert, T., & Kütük, S. (2013). Physical and marshall properties of borogypsum used as filler aggregate in asphalt concrete. Journal of Materials in Civil Engineering, 25(2), 266- 273.
  • [4] Gregory, C. A., Saylak, D., & Ledbetter, W. B. (1984). The use of by-product phosphogypsum for road bases and subbases. Transportation Research Record, 998, 47-52.
  • [5] Degirmenci, N., Okucu, A., & Turabi, A. (2007). Application of phosphogypsum in soil stabilization. Building and environment, 42(9), 3393-3398.
  • [6] Shen, W., Zhou, M., & Zhao, Q. (2007). Study on lime–fly ash–phosphogypsum binder. Construction and Building Materials, 21(7), 1480-1485.
  • [7] Yilmaz, I., & Civelekoglu, B. (2009). Gypsum: an additive for stabilization of swelling clay soils. Applied clay science, 44(1- 2), 166-172.
  • [8] Shen, W., Zhou, M., Ma, W., Hu, J., & Cai, Z. (2009). Investigation on the application of steel slag–fly ash–phosphogypsum solidified material as road base material. Journal of hazardous materials, 164(1), 99-104.
  • [9] Kalkan, E., & Akbulut, S. (2004). The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners. Engineering Geology, 73(1-2), 145-156.
  • [10] Kalantari, B., Prasad, A., & Huat, B. B. (2011). Stabilising peat soil with cement and silica fume. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 164(1), 33-39.
  • [11] Sattar, M. A. A., Daud, K. A., & Al-Azzawi, A. A. (2012). Effect of silica fume addition on the behavior of silty-clayey soils. Journal of Engineering and Sustainable Development, 16(1), 92-105.
  • [12] Negi, C., Yadav, R.K. and Singhai, A.K.,a (2013). Effect of silica fume on engineering properties of black cotton soil. Inter. J. of Computational Eng. Research, 3(7), 1.
  • [13] Negi, C., Yadav, R.K., and Singhai, A.K.,b (2013). Effect of silica fume on index properties of black cotton soil. Inter. J. of Scientific & Eng. Research, 4(8).
  • [14] Gupta, C., & Sharma, R. K. (2014). Influence of micro silica fume on sub grade characteristics of expansive soil. International Journal of Civil Engineering Research, 5(1), 77-82.
  • [15] Cokca, E. (1999). Effect of fly ash on swell pressure of an expansive soil. Electronic Journal of Geotechnical Engineering, 4, 14.
  • [16] Consoli, N. C., Prietto, P. D. M., Carraro, J. A. H., & Heineck, K. S. (2001). Behavior of compacted soil-fly ash-carbide lime mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 127(9), 774-782.
  • [17] Phani Kumar, B. R., & Sharma, R. S. (2004). Effect of fly ash on engineering properties of expansive soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 764- 767.
  • [18] Nalbantoğlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377-381.
  • [19] Prabakar, J., Dendorkar, N., & Morchhale, R. K. (2004). Influence of fly ash on strength behavior of typical soils. Construction and Building Materials, 18(4), 263-267.
  • [20] Kolias, S., Kasselouri-Rigopoulou, V., & Karahalios, A. (2005). Stabilisation of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27(2), 301-313.
  • [21] Edil, T. B., Acosta, H. A., & Benson, C. H. (2006). Stabilizing soft fine-grained soils with fly ash. Journal of materials in civil engineering, 18(2), 283-294.
  • [22] Chauhan, M. S., Mittal, S., & Mohanty, B. (2008). Performance evaluation of silty sand subgrade reinforced with fly ash and fibre. Geotextiles and geomembranes, 26(5), 429-435.
  • [23] Brooks, R. M. (2009). Soil stabilization with fly ash and rice husk ash. International Journal of Research and Reviews in Applied Sciences, 1(3), 209-217.
  • [24] Cristelo, N., Glendinning, S., Miranda, T., Oliveira, D., & Silva, R. (2012). Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction. Construction and building materials, 36, 727-735.
  • [25] Akbulut, S., Arasan, S., & Kalkan, E. (2007). Modification of clayey soils using scrap tire rubber and synthetic fibers. Applied Clay Science, 38(1-2), 23-32.
  • [26] Kalkan, E. (2013). Preparation of scrap tire rubber fiber–silica fume mixtures for modification of clayey soils. Applied Clay Science, 80, 117-125.
  • [27] Fragaszy, R. J., & Lawton, E. (1984). Bearing capacity of reinforced sand subgrades. Journal of Geotechnical Engineering, 110(10), 1500-1507.
  • [28] Huang, C. C., & Tatsuoka, F. (1990). Bearing capacity of reinforced horizontal sandy ground. Geotextiles and Geomembranes, 9(1), 51-82.
  • [29] Akinmusuru, J. O., & Akinbolade, J. A. (1981). Stability of loaded footings on reinforced soil. Journal of Geotechnical and Geoenvironmental Engineering, 107(ASCE 16320 Proceeding).
  • [30] Yetimoglu, T., Inanir, M., & Inanir, O. E. (2005). A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotextiles and Geomembranes, 23(2), 174-183.
  • [31] Guido, V.A., Chang, D.K., Sweeny, M.A. (1986). Comparison of geogrid and geotextile reinforced slabs. Canadian Geotech. J. 20, 435-440.
  • [32] Ghosh, A., Ghosh, A., & Bera, A. K. (2005). Bearing capacity of square footing on pond ash reinforced with jute-geotextile. Geotextiles and Geomembranes, 23(2), 144-173.
  • [33] Omar, M.T., Das, B.M., Yen, S.C., Puri, V.K., Cook, E.E., a (1993). Ultimate bearing capacity of rectangular foundations on geogrid reinforced sand. Geotechnical Testing J, ASTM 16 (2), 246-252.
  • [34] Omar, M.T., Das, B.M., Puri, V.K., Yen, S.C., b, (1993). Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement. Canadian Geotech. J. 30, 545-549.
  • [35] Yetimoglu, T., Wu, J. T., & Saglamer, A. (1994). Bearing capacity of rectangular footings on geogrid-reinforced sand. Journal of Geotechnical Engineering, 120(12), 2083-2099.
  • [36] Adams, M. T., & Collin, J. G. (1997). Large model spread footing load tests on geosynthetic reinforced soil foundations. Journal of Geotechnical and Geoenvironmental Engineering, 123(1), 66-72.
  • [37] Patra, C. R., Das, B. M., Bhoi, M., & Shin, E. C. (2006). Eccentrically loaded strip foundation on geogrid-reinforced sand. Geotextiles and Geomembranes, 24(4), 254-259.
  • [38] Davis, E. A., & Hudson, E. C. (2000). Development of new colors and style for recycled polypropylene toothbrushes. UMass Lowell, Chelsea Center for Recycling and Economic Development.
  • [39] ASTM, D. (2011). 2487 (2006) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). Book of Standards, 4(08).
  • [40] ASTM, D. (2000). 698-00, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International. Annual Book of ASTM Standards, 4.
  • [41] ASTM, D. 4318-00. 2000. Standard test method for liquid limit, plastic limit and plasticity index of soils. Annual Book of ASTM Standards, 4, 08.
  • [42] British Standard, B. S. 1377 part 2. 1990. Methods of Test for Soils for Civil Engineering Purposes General Requirements and Sample Preparation.
  • [43] ASTM, D. 2166 (2006). Standard test method for unconfined compressive strength of cohesive soil. ASTM standard D, 2166.
  • [44] Kværnø, S. H., & Øygarden, L. (2006). The influence of freeze– thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena, 67(3), 175-182.
  • [45] Qi, J., Ma, W., & Song, C. (2008). Influence of freeze–thaw on engineering properties of a silty soil. Cold regions science and technology, 53(3), 397-404.
  • [46] Gullu, H., & Hazirbaba, K. (2010). Unconfined compressive strength and post-freeze–thaw behavior of fine-grained soils treated with geofiber and synthetic fluid. Cold regions science and technology, 62(2-3), 142-150.
  • [47] Ghazavi, M., & Roustaie, M. (2010). The influence of freeze– thaw cycles on the unconfined compressive strength of fiber-reinforced clay. Cold regions science and technology, 61(2-3), 125-131.
  • [48] Liu, J., Wang, T., & Tian, Y. (2010). Experimental study of the dynamic properties of cement-and lime-modified clay soils subjected to freeze–thaw cycles. Cold Regions Science and Technology, 61(1), 29-33.
  • [49] Hazirbaba, K., Zhang, Y., & Hulsey, J. L. (2011). Evaluation of temperature and freeze–thaw effects on excess pore pressure generation of fine-grained soils. Soil dynamics and earthquake engineering, 31(3), 372-384.
  • [50] Zaimoğlu, A. Ş., Hattatoğlu, F., Akbulut, R. K., & Yetimoğlu, T. (2012). Freeze-thaw behavior of fine grained soils subjected to surcharge loads. In 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30.
  • [51] Yarbaşı, N., Kalkan, E., & Akbulut, S. (2007). Modification of the geotechnical properties, as influenced by freeze–thaw, of granular soils with waste additives. Cold regions science and technology, 48(1), 44-54.
  • [52] Kamei, T., Ahmed, A., & Shibi, T. (2012). Effect of freeze– thaw cycles on durability and strength of very soft clay soil stabilised with recycled Bassanite. Cold Regions Science and Technology, 82, 124-129.
  • [53] Czurda, K. A., & Hohmann, M. (1997). Freezing effect on shear strength of clayey soils. Applied clay science, 12(1-2), 165-187.
  • [54] Viklander, P., & Eigenbrod, D. (2000). Stone movements and permeability changes in till caused by freezing and thawing. Cold Regions Science and Technology, 31(2), 151-162.
  • [55] Ahmed, A., & Ugai, K. (2011). Environmental effects on durability of soil stabilized with recycled gypsum. Cold regions science and technology, 66(2-3), 84-92.
  • [56] Kamei, T., Ahmed, A., & Ugai, K. (2011). The performance of soft clay soil stabilized with recycled gypsum in wet environment. In Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering.
  • [57] Yetimoglu, T., & Salbas, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21(2), 103-110.
  • [58] Freilich, B. J., Li, C., & Zornberg, J. G. (2010). Effective shear strength of fiber-reinforced clays. In 9th International Conference on Geosynthetics, Brazil, 1997-2000.
  • [59] Zaimoglu, A. S. (2010). Freezing–thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold regions science and technology, 60(1), 63-65.
  • [60] Tunç A. (2002). Geotechnic and Its Applications on Road Engineering. Atlas Publisher, İstanbul, Turkey [in Turkish].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7878fd52-60ce-40f5-9c1d-303a947e31b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.