PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the existence of a nontrivial equilibrium in relation to the basic reproductive number

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Equilibrium analysis in autonomous evolutionary models is of central importance for developing long term treatments. This task typically includes checks on the existence and stability of some equilibria. Prior to touching on the stability, one often attempts to determine the existence where the basic reproductive number R0 plays a critical role as a threshold parameter. When analyzing a nontrivial equilibrium (e.g., an endemic, boundary, or coexistence equilibrium) where R0 is explicit, we usually come across a typical result: if R0 > 1, then a nontrivial equilibrium exists in the biological sense. However, for more sophisticated models, R0 can be too complicated to be revealed in terms of the involving parameters; the task of relating the formulation of a nontrivial equilibrium to R0 thus becomes intractable. This paper shows how to mitigate such a problem with the aid of functional analysis, adopting the framework of a nonlinear eigenvalue problem. An equilibrium equation is first to be transformed into a canonical equation in a lower dimension, and then the existence is confirmed under several conditions. Three models are tested showing the applicability of this approach.
Rocznik
Strony
623--636
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Mathematical Institute, University of Koblenz, Universität Straße 1, 56070 Koblenz, Germany
autor
  • Department of Mathematics, Diponegoro University, Jalan Prof. H. Soedarto, SH, 50275 Semarang, Indonesia
autor
  • Department of Mathematics, Bandung Institute of Technology, Jalan Ganesha 10, 40132 Bandung, Indonesia
autor
  • Mathematical Institute, University of Koblenz, Universität Straße 1, 56070 Koblenz, Germany
Bibliografia
  • [1] Aguiar, M., Kooi, B.W., Rocha, F., Ghaffari, P. and Stollenwerk, N. (2013). How much complexity is needed to describe the fluctuations observed in dengue hemorrhagic fever incidence data?, Ecological Complexity 16: 31–40.
  • [2] Arino, J., Miller, J.M. and van den Driessche, P. (2005). A multi-species epidemic model with spatial dynamics, Mathematical Medicine and Biology: A Journal of the IMA 22(2): 3140.
  • [3] Cushing, J.M. (1998). An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA.
  • [4] Gelfand, I. (1941). Normierte Ringe, Mathematiceskii Sbornik 9(51)(1): 3–24.
  • [5] Golubitsky, M. and Schaeffer, D.G. (1985). Singularities and Groups in Bifurcation Theory, Vol. I, Springer, New York, NY.
  • [6] Horn, R.A. and Johnson, C.R. (2013). Matrix Analysis, 2nd Ed., Cambridge University Press, New York, NY.
  • [7] Krasnoselskii, M. and Zabreiko, P. (1984). Geometrical Methods of Nonlinear Analysis, Springer, New York, NY.
  • [8] Ma, T. and Wang, S. (2005). Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science A, Vol. 53, World Scientific Publishing, Singapore.
  • [9] Nirenberg, L. (2001). Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics 6, New York University Courant Institute of Mathematical Sciences, New York, NY.
  • [10] Ortega, J.M. (1932). Numerical Analysis: A Second Course, SIAM, Philadelphia, PA.
  • [11] Rabinowitz, P.H. (1971). Some global results for nonlinear eigenvalue problems, Journal of Functional Analysis 7(3): 487–513.
  • [12] Rabinowitz, P.H. (1977). A bifurcation theorem for potential operators, Journal of Functional Analysis 25(4): 412–424.
  • [13] van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1): 29–48.
  • [14] Wijaya, K.P., Goetz, T. and Soewono, E. (2014). An optimal control model of mosquito reduction management in a dengue endemic region, International Journal of Biomathematics 7(5): 1450056–22.
  • [15] Wijaya, K.P., Goetz, T. and Soewono, E. (2016). Advances in mosquito dynamics modeling, Mathematical Methods in the Applied Sciences 39(16): 4750–4763.
  • [16] Zadeh, L.A. and Desoer, C.A. (1963). Linear System Theory: The State Approach, McGraw-Hill, New York, NY.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78745943-d491-4fa1-9578-d4d5d647b101
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.