PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of average surface roughness and formability in single point incremental forming using artificial neural network

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Single point incremental forming (SPIF) is a flexible, innovative, and cheap process for rapidmanufacturing of complex sheet metal parts. It is a crucial task for engineers to predict aprocess when many independent parameters are affecting simultaneously its performance.An artificial neural network (ANN) based prediction model was developed to evaluateaverage surface roughness (Ra) and maximum forming angle (Ømax) while SPIF forming ofAA5052-H32 material. A feedforward backpropagation network with Levenberg–Marquardtalgorithm was employed to build ANN model. The ANNs (4-n-1, 4-n-2) were generated byintroducing different combinations of transfer functions and a number of neurons. Theconfirmation runs were performed to verify the agreement between the ANN predicted andthe experimental results. The developed ANN model (4-n-1) was capable of predicting theprocess response with an excellent accuracy and resulted in overall R-value, MSE, and MAPEof 0.99807, 0.0209, and 5.96% for Ra0.99913, 0.0281, and 0.003 for Ømax. The optimum 4-n-2model was built with overall R-value, MSE of 0.99999 and 0.057194, respectively. Hence, itwas found that the engineering efforts may be reduced in the SPIF process with successfulANN model implementation.
Rocznik
Strony
1135--1149
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Mechanical Engineering Department, Indian Institute of Technology, Bombay 400076, India
  • Mechanical Engineering Department, National Institute of Technology, Warangal 506004, India
autor
  • Mechanical Engineering Department, National Institute of Technology, Warangal 506004, India
  • Faculty of Management and Computer Modeling, Kielce University of Technology, 25-314 Kielce, Poland
Bibliografia
  • [1] G. Buffa, D. Campanella, L. Fratini, On the improvement ofmaterial formability in SPIF operation through tool stirringaction, Int. J. Adv. Manuf. Technol. 66 (2013) 1343–1351.
  • [2] X. Ziran, L. Gao, G. Hussain, Z. Cui, The performance of flatend and hemispherical end tools in single-point incrementalforming, Int. J. Adv. Manuf. Technol. 46 (2010) 1113–1118.
  • [3] G. Hussain, L. Gao, Z.Y. Zhang, Formability evaluation of apure titanium sheet in the cold incremental forming process,Int. J. Adv. Manuf. Technol. 37 (2008) 920–926.
  • [4] G. Ambrogio, L. Filice, F. Guerriero, R. Guido, D. Umbrello,Prediction of incremental sheet forming process performanceby using a neural network approach, Int. J. Adv. Manuf.Technol. 54 (2011) 921–930.
  • [5] Z. Liu, S. Liu, Y. Li, P. Meehan, Modelling and optimization ofsurface roughness in incremental sheet forming using amulti-objective function, Mater. Manuf. Process. 29 (2014)808–818.
  • [6] M. Durante, a. Formisano, A. Langella, F.M. Capece Minutolo,The influence of tool rotation on an incremental formingprocess, J. Mater. Process. Technol. 209 (2009) 4621–4626.
  • [7] N.G. Azevedo, J.S. Farias, R.P. Bastos, P. Teixeira, J.P. Davim, R.J. Alves de Sousa, Lubrication aspects during single pointincremental forming for steel and aluminum materials, Int. J.Precis. Eng. Manuf. 16 (2015) 589–595.
  • [8] M. Ham, J. Jeswiet, Single point incremental forming limitsusing a Box-Behnken design of experiment, Key Eng. Mater.344 (2007) 629–636.
  • [9] I. Cerro, E. Maidagan, J. Arana, a. Rivero, P.P. Rodríguez,Theoretical and experimental analysis of the dielessincremental sheet forming process, J. Mater. Process.Technol. 177 (2006) 404–408.
  • [10] S.P. Shanmuganatan, V.S. Senthil Kumar, Experimentalinvestigation and finite element modeling on profileforming of conical component using Al 3003(O) alloy, Mater.Des. 36 (2012) 564–569.
  • [11] S. Golabi, H. Khazaali, Determining frustum depth of 304stainless steel plates with various diameters and thicknessesby incremental forming, J. Mech. Sci. Technol. 28 (2014) 3273–3278.
  • [12] Z. Cui, Z. Cedric Xia, F. Ren, V. Kiridena, L. Gao, Modeling andvalidation of deformation process for incremental sheetforming, J. Manuf. Process. 15 (2013) 236–241.
  • [13] M. Bambach, B. Taleb Araghi, G. Hirt, Strategies to improvethe geometric accuracy in asymmetric single pointincremental forming, Prod. Eng. 3 (2009) 145–156.
  • [14] A. Attanasio, E. Ceretti, C. Giardini, L. Mazzoni, Asymmetrictwo points incremental forming: improving surface qualityand geometric accuracy by tool path optimization, J. Mater.Process. Technol. 197 (2008) 59–67.
  • [15] Y.H. Kim, J.J. Park, Effect of process parameters on formabilityin incremental forming of sheet metal, J. Mater. Process.Technol. 130–131 (2002) 42–46.
  • [16] M.S. Shim, J.J. Park, The formability of aluminium sheet inincremental forming, J. Mater. Process. Technol. 113 (2001)654–658.
  • [17] V. Mugendiran, A. Gnanavelbabu, R. Ramadoss, Parameteroptimization for surface roughness and wall thickness onAA5052 aluminium alloy by incremental forming usingresponse surface methodology, Procedia Eng. 97 (2014) 1991–2000.
  • [18] F.C. Minutolo, M. Durante, A. Formisano, A. Langella,Evaluation of the maximum slope angle of simplegeometries carried out by incremental forming process, J.Mater. Process. Technol. 193 (2007) 145–150.
  • [19] M.J. Mirnia, B. Mollaei Dariani, H. Vanhove, J.R. Duflou,Thickness improvement in single point incrementalforming deduced by sequential limit analysis, Int. J. Adv.Manuf. Technol. 70 (2014) 2029–2041.
  • [20] J.R. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker,Improved SPIF performance through dynamic local heating,Int. J. Mach. Tools Manuf. 48 (2008) 543–549.
  • [21] J.J. Park, Y.H. Kim, Fundamental studies on the incrementalsheet metal forming technique, J. Mater. Process. Technol.140 (2003) 447–453.
  • [22] G. Hussain, L. Gao, N. Hayat, L. Qijian, The effect of variationin the curvature of part on the formability in incrementalforming: an experimental investigation, Int. J. Mach. ToolsManuf. 47 (2007) 2177–2181.
  • [23] A. Bhattacharya, K. Maneesh, N. Venkata Reddy, J. Cao,Formability and surface finish studies in single pointincremental forming, J. Manuf. Sci. Eng. 133 (2011) 061020,http://dx.doi.org/10.1115/1.4005458.
  • [24] B. Riadh, A. Henia, B. Hedi, Application of response surfaceanalysis and genetic algorithm for the optimization of singlepoint incremental forming process, Key Eng. Mater. 557 (2013)1265–1272.
  • [25] Z. Liu, Y. Li, P.A. Meehan, Experimental investigation ofmechanical properties, formability and force measurementfor AA7075-O aluminum alloy sheets formed by incrementalforming, Int. J. Precis. Eng. Manuf. 14 (2013) 1891–1899.
  • [26] S. Kurra, S.P. Regalla, Experimental and numerical studies onformability of extra-deep drawing steel in incremental sheetmetal forming, Integr. Med. Res. 3 (2014) 158–171.
  • [27] S. Kurra, N.H. Rahman, S.P. Regalla, A.K. Gupta, Modeling andoptimization of surface roughness in single pointincremental forming process, J. Mater. Res. Technol. 4 (2015)304–313.
  • [28] V. Gulati, A. Aryal, P. Katyal, A. Goswami, Process parametersoptimization in single point incremental forming, J. Inst. Eng.(India): Ser. C 97 (2015) 221–229.
  • [29] G. Palumbo, M. Brandizzi, Experimental investigations on thesingle point incremental forming of a titanium alloycomponent combining static heating with high tool rotationspeed, Mater. Des. 40 (2012) 43–51.
  • [30] A. Mulay, S. Ben, S. Ismail, A. Kocanda, Experimentalinvestigations into the effects of SPIF forming conditions onsurface roughness and formability by design of experiments,J. Braz. Soc. Mech. Sci. Eng. (2017), http://dx.doi.org/10.1007/s40430-016-0703-7.
  • [31] M. Honarpisheh, M. Jobedar, M. Alinaghian, Multi-responseoptimization on single-point incremental forming ofhyperbolic shape Al-1050/Cu bimetal using response surfacemethodology, Int. J. Adv. Manuf. Technol. 96 (2018) 3069–3080.
  • [32] G. Liu, Z. Li, Single point incremental forming of Cu-Alcomposite sheets: a comprehensive study on deformationbehaviors, Arch. Civ. Mech. Eng. 19 (2019) (2019) 484–502.
  • [33] A. Kumar, V. Gulati, Experimental investigation andoptimisation of surface roughness in negative incrementalforming, Measurement 131 (2019) 419–430.
  • [34] S. Park, C.G. Lee, H.N. Han, S.-J. Kim, K. Chung, Improvementof the drawability based on the surface friction stir process ofAA5052-H32 automotive sheets, Met. Mater. Int. 14 (2008)47–57.
  • [35] M. Mia, N. Ranjan, Prediction of surface roughness in hardturning under high pressure coolant using artificial neuralnetwork, Measurement 92 (2016) 464–474.
  • [36] M.T. Hagan, M.B. Menhaj, Training feedforward networkswith the Marquardt algorithm, IEEE Trans. Neural Netw. 5(1994) 2–6.
  • [37] M.R. Thakker, J.K. Parikh, M.A. Desai, Microwave assistedextraction of essential oil from the leaves of Palmarosa:multi-response optimization and predictive modelling, Ind.Crops Prod. 86 (2016) 311–319.
  • [38] A. Chakraborty, S. Roy, R. Banerjee, An experimental basedANN approach in mapping performance- emissioncharacteristics of a diesel engine operating in dual-fuelmode with LPG, J. Nat. Gas Sci. Eng. 28 (2016) 15–30.
  • [39] T.T. Nguyen, Y.S. Yang, K.Y. Bae, S.N. Choi, Prediction ofdeformations of steel plate by artificial neural network informing process with induction heating, J. Mech. Sci.Technol. 23 (2009) 1211–1221.
  • [40] S. Roy, R. Banerjee, A.K. Das, P.K. Bose, Development of anANN based system identification tool to estimate theperformance-emission characteristics of a CRDI assistedCNG dual fuel diesel engine, J. Nat. Gas Sci. Eng. 21 (2014)147–158.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-786d220f-f5b3-4a5c-9226-55f18ec584b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.