PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of water soaking on the ultimate tensile strength of polyester-based coated woven fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ wytrzymałości na rozciąganie tkanin powlekanych na bazie poliestru w warunkach moczenia w wodzie
Języki publikacji
EN
Abstrakty
EN
This research aims to determine the influence of water-soaking on polyester-based coated woven fabrics for ultimate tensile strength and elongation at break under uniaxial tensile tests. The paper begins with a short survey of literature concerning the investigation of the determination of coated woven fabric properties. The authors carried out the uniaxial tensile tests with an application of a flat grip to establish the values of the ultimate tensile strength of groups of specimens treated with different moisture conditions. SEM fractography is performed to determine the cross-section structures of coated woven fabrics. The change in the mechanical properties caused by the influence of water immersion has not been noticed in the performed investigations.
PL
Niniejsze badania mają na celu określenie wpływu nasiąkania wodą na poliestrowe tkaniny powlekane na wytrzymałość na rozciąganie i wydłużenie przy zerwaniu w próbach jednoosiowego rozciągania. Artykuł rozpoczyna się od krótkiego przeglądu literatury dotyczącej badań nad właściwościami tkanin technicznych. Autorzy przeprowadzili próby rozciągania jednoosiowego z użyciem szczęk płaskich w celu wyznaczenia wartości wytrzymałości na rozciąganie grup próbek poddanych działaniu różnych warunków wilgotnościowych. Wykonano także fraktografie SEM w celu określenia struktury przekrojowej tkanin powlekanych. W przeprowadzonych badaniach nie zauważono zmiany właściwości mechanicznych pod wpływem zanurzenia w wodzie.
Rocznik
Strony
303--318
Opis fizyczny
Bibliogr. 62 poz., il., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
Bibliografia
  • [1] S. Pałkowski, A. Zagubień, and S. Kobielak, “Konstrukcje budowlane dużych rozpiętości”, in Budownictwo ogólne. Tom 4. Konstrukcje budynków. Warsaw, Poland: Arkady, 2010, pp. 2-163.
  • [2] J. Llorens, Ed., Fabric Structures in Architecture. Woodhead Publishing, 2015.
  • [3] K. Gerlic, “Projektowanie zadaszeń membranowych na przykładzie parkingu rowerowego w Jaworznie”, Builder, vol. 288, no. 7, pp. 12-15, 2021, doi: 10.5604/01.3001.0014.9123.
  • [4] S.J. Armijos, Fabric Architecture: Creative Resources for Shade, Signage, and Shelter. Wiley, 2008.
  • [5] B.H.V. Topping and P. Iványi, Computer Aided Design of Cable-Membrane Structures. Saxe-Coburg Publications, 2007.
  • [6] K. Gerlic, Membrane canopies in Poland – Freedom of forming (Zadaszenia membranowe w Polsce – swoboda kształtowania). Gliwice, Poland: Wydawnictwo Politechniki Śląskiej, 2018. [Online]. Available: https://delibra.bg.polsl.pl/dlibra/doccontent?id=48922
  • [7] Y. Zhang, Q. Zhang, and H. Lv, “Mechanical properties of polyvinylchloride-coated fabrics processed with Precontraint®technology”, Journal of Reinforced Plastics and Composites, vol. 31, no. 23, pp. 1670-1684, 2012, doi: 10.1177/0731684412459898.
  • [8] A. Ambroziak, “Characterization study on mechanical properties of polyester coated fabric”, Archives of Civil Engineering, vol. 66, no. 2, pp. 105-118, 2020, doi: 10.24425/ace.2020.131799.
  • [9] J. Hu, W. Chen, Y. Qu, and D. Yang, “Safety and serviceability of membrane buildings: A critical review on architectural, material and structural performance”, Engineering Structures, vol. 210, art. no. 110292, 2020, doi: 10.1016/j.engstruct.2020.110292.
  • [10] S. Ghosh, B. Kundu, D. Ghosh, K. Saha, and P. Roy, “A review on mechanical characterization of PVC coated fabrics”, AIP Conference Proceedings, vol. 2708, art. no. 060002, 2022, doi: 10.1063/5.0122811.
  • [11] A. Dixit and H.S. Mali, “Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a Review”, Mechanics of Composite Materials, vol. 49, no. 1, pp. 1-20, 2013, doi: 10.1007/s11029-013-9316-8.
  • [12] P.D. Gosling and B.N. Bridgens, “Material Testing & Computational Mechanics – A New Philosophy for Architectural Fabrics”, International Journal of Space Structures, vol. 23, no. 4, pp. 215-232, 2008, doi: 10.1260/026635108786959870.
  • [13] Y. Yu, Z. Cao, and Y. Sun, “Mechanical properties of four types of PVC-coated woven fabrics at high-temperature and after exposure to high-temperature”, Structures, vol. 33, pp. 830-840, 2021, doi: 10.1016/j.istruc.2021.04.036.
  • [14] A. Ambroziak and P. Kłosowski, “Influence of thermal effects on mechanical properties of PVDF-coated fabric”, Journal of Reinforced Plastics and Composites, vol. 33, no. 7, 2014, doi: 10.1177/0731684413512705.
  • [15] S. Xue, F. Yan, and G. Sun, “Mechanical properties of coated fabric membranes at high temperature”, Journal of Engineered Fibers and Fabrics, vol. 17, 2022, doi: 10.1177/15589250221101387.
  • [16] L. Zheng, Y. Ye, J. Zhuang, and Y. Zheng, “Impact Tensile Behaviors of PVDF Building Coated Fabrics”, Advances in Civil Engineering, vol. 2020, art. no. 1620760, 2020, doi: 10.1155/2020/1620760.
  • [17] A. Ambroziak, “Mechanical Properties of Polyester Coated Fabric Subjected to Biaxial Loading”, Journal of Materials in Civil Engineering, vol. 27, no. 11, 2015, doi: 10.1061/(ASCE)MT.1943-5533.0001265.
  • [18] A. Ambroziak and P. Kłosowski, “Mechanical properties of Precontraint 1202 S2 based on uniaxial tensile and creep tests”, Journal of Reinforced Plastics and Composites, vol. 36, no. 4, 2017, doi: 10.1177/0731684416682604.
  • [19] N. Freiherrova and M. Krejsa, “Approaches of biaxial testing of membrane materials”, AIP Conference Proceedings, vol. 2425, no. 1, art. no. 040015, 2022, doi: 10.1063/5.0082045.
  • [20] J. Filipkowski and J. Jacoszek, “Mechanical properties of covered textile material”, Archives of Civil Engineering, vol. 34, no. 2, pp. 243-259, 1988.
  • [21] P. Kłosowski and A. Zagubień, “Analysis of Material Properties of Technical Fabric for Hanging Roofs and Pneumatic Shells”, Archives of Civil Engineering, vol. 49, no. 3, pp. 277-294, 2003.
  • [22] H. Asadi, J. Uhlemann, N. Stranghoener, and M. Ulbricht, “Water influence on the uniaxial tensile behavior of polytetrafluoroethylene-coated glass fiber fabric”, Materials, vol. 14, no. 4, art. no. 846, 2021.
  • [23] A. Ambroziak and P. Kłosowski, “Influence of Water-Induced Degradation of Polytetrafluoroethylene (PTFE)-Coated Woven Fabrics Mechanical Properties”, Materials, vol. 15, no. 1, art. no. 1, 2022, doi: 10.3390/ma15010001.
  • [24] H. Asadi, J. Uhlemann, N. Stranghoener, and M. Ulbricht, “Tensile strength deterioration of PVC coated PET woven fabrics under single and multiplied artificial weathering impacts and cyclic loading”, Construction and Building Materials, vol. 342, art. no. 127843, 2022, doi: 10.1016/j.conbuildmat.2022.127843.
  • [25] A. Ambroziak, “Mechanical properties of PVDF-coated fabric under tensile tests”, Journal of Polymer Engineering, vol. 35, no. 4, 2015, doi: 10.1515/polyeng-2014-0087.
  • [26] P. Kłosowski, K. Zerdzicki, and K. Woznica, “Influence of artificial thermal ageing on polyester-reinforced and polyvinyl chloride coated AF9032 technical fabric”, Textile Research Journal, vol. 89, no. 21-22, pp. 4632-4646, 2019, doi: 10.1177/0040517519839934.
  • [27] V. Sacevičiené, M. Juciene, V. Dobilaite, V. Krylova, S. Žalenkiene, N. Dukštiene, and R. Bliudžius, “Investigation of the changes in physical properties of PES/PVC fabrics after aging”, Journal of Applied Polymer Science, vol. 136, no. 21, art. no. 47523, 2019, doi: 10.1002/app.47523.
  • [28] Z. Qiu, W. Chen, C. Gao, and Y. Hu, “Experimental and numerical study on nonlinear mechanical properties of laminated woven fabrics”, Construction and Building Materials, vol. 164, pp. 672-681, 2018, doi: 10.1016/j.conbuildmat.2018.01.004.
  • [29] P. Kłosowski, K. Zerdzicki, and K. Woznica, “Identification of Bodner-Partom model parameters for technical fabrics”, Computers & Structures, vol. 187, pp. 114-121, 2017, doi: 10.1016/j.compstruc.2017.03.022.
  • [30] P. Kłosowski, W. Komar, and K. Woźnica, “Finite element description of nonlinear viscoelastic behaviour of technical fabric”, Construction and Building Materials, vol. 23, no. 2, pp. 1133-1140, 2009, doi: 10.1016/j.conbuildmat.2008.06.002.
  • [31] Z. Lanlan, Z. Yingying, S. Wei, X. Junhao, and X. Jigang, “A nonlinear damage constitutive model of PVC coated fabrics”, Structures, vol. 30, pp. 368-377, 2021, doi: 10.1016/j.istruc.2021.01.027.
  • [32] B. Zhao, J. Hu, W. Chen, J. Chen, and Z. Jing, “A nonlinear uniaxial stress-strain constitutive model for viscoelastic membrane materials”, Polymer Testing, vol. 90, art. no. 106633, 2020, doi: 10.1016/j.polymer testing.2020.106633.
  • [33] D. Chen, J.J. Xiong, J.B. Bai, and C.H. Dong, “Simplified analytical model to predict nonlinear mechanical responses of flexible composite sheet subjected to out-of-plane loading”, Mechanics of Advanced Materials and Structures, vol. 30, no. 9, pp. 1723-1736, 2023, doi: 10.1080/15376494.2022.2042629.
  • [34] D.T. Karádi, A.A. Sipos, M. Halász, V. Hliva, and D. Hegyi, “An elastic phenomenological material law of technical textile with a nonlinear shear behaviour”, Journal of Reinforced Plastics and Composites, vol. 40, no. 19-20, pp. 759-769, 2021, doi: 10.1177/07316844211005842.
  • [35] J. Xu, Y. Zhang, J. Song, Y. Zhao, and L. Zhang, “Quasi-static puncture resistance behaviors of architectural coated fabric”, Composite Structures, vol. 273, art. no. 114307, 2021, doi: 10.1016/j.compstruct.2021.114307.
  • [36] Q.-S. Wang, R.-J. Sun, X. Tian, M. Yao, and Y. Feng, “Quasi-static puncture resistance behaviors of highstrength polyester fabric for soft body armor”, Results in Physics, vol. 6, pp. 554-560, 2016, doi: 10.1016/j.rinp.2016.08.018.
  • [37] Y. Zhang, J. Xu, Y. Zhou, Q. Zhang, and F. Wu, “Central tearing behaviors of PVC coated fabrics with initial notch”, Composite Structures, vol. 208, pp. 618-633, 2019, doi: 10.1016/j.compstruct.2018.09.104.
  • [38] H. Bao, M. Wu, and X. Zhang, “Study on tearing tests and the determination of fracture toughness of PVC-coated fabric”, Journal of Industrial Textiles, vol. 51, no. 6, pp. 977-1006, 2022, doi: 10.1177/1528083721993943.
  • [39] X. Junhao, Z. Yingying, and X. Jigang, “Off-axial failure analysis of polytetrafluoroethylene-coated woven glass fibers under different loading rates”, Journal of Industrial Textiles, vol. 47, no. 3, pp. 310-330, 2017, doi: 10.1177/1528083716647198.
  • [40] J. Meng, M. Lv, Z. Qu, and P. Li, “Mechanical Properties and Strength Criteria of Fabric Membrane for the Stratospheric Airship Envelope”, Applied Composite Materials, vol. 24, pp. 77-95, 2017, doi: 10.1007/s10443-016-9515-2.
  • [41] R. He, X. Sun, Y. Wu, G. Tang, and V. Carvelli, “Biaxial tearing properties of woven coated fabrics using digital image correlation”, Composite Structures, vol. 272, art. no. 114206, 2021, doi: 10.1016/j.compstruct.2021.114206.
  • [42] L. Wang, B. Zhao, J. Wu, C. Chen, and K. Zhou, “Experimental and numerical investigation on mechanical behaviors of woven fabric composites under off-axial loading”, International Journal of Mechanical Sciences, vol. 141, no. 6, pp. 157-167, 2018, doi: 10.1016/j.ijmecsci.2018.03.030.
  • [43] X. Zhang and M. Wu, “Modified stress field model for critical tearing strength of architectural coated fabrics”, Journal of Industrial Textiles, vol. 51, no. 4_suppl, pp. 5560S-5591S, 2022, doi: 10.1177/15280837221106232.
  • [44] Y. Chen, S. Li, K. Ding, F. Wang, and G. Fu, “Investigation of tear strength of an airship envelope fabric by theoretical method and uniaxial tear test”, Journal of Engineered Fibers and Fabrics, vol. 14, pp. 1-11, 2019, doi: 10.1177/1558925019879295.
  • [45] X. Sun, R. He, and Y. Wu, “A novel tearing residual strength model for architectural coated fabrics with central crack”, Construction and Building Materials, vol. 263, art. no. 120133, 2020, doi: 10.1016/j.conbuildmat.2020.120133.
  • [46] J. Chen, R. Zhang, B. Zhao, W. Chen, and M. Wang, “Numerical investigation on central tearing behaviors and propagation mechanisms of coated warp-knitted fabrics”, Journal of Industrial Textiles, vol. 51, no. 4_suppl, pp. 6503S-6532S, 2022, doi: 10.1177/15280837221093660.
  • [47] C. Ziqi, Z. Yingying, X. Junhao, L. Xiaocheng, Z. Lanlan, and Z. Yushuai, “Off-axis tearing properties of the biaxial warp-knitted fabrics”, Composite Structures, vol. 300, art. no. 116168, 2022, doi: 10.1016/j.compstruct. 2022.116168.
  • [48] J. Chen, W. Chen, H. Zhou, B. Zhao, Y. Ding, and N. Zhang, “Central tearing characteristics of laminated fabrics: Effect of slit parameter, off-axis angle, and loading speed”, Journal of Reinforced Plastics and Composites, vol. 36, no. 13, pp. 921-941, 2017, doi: 10.1177/0731684417695460.
  • [49] T. Shi, J. Hu, W. Chen, and C. Gao, “Biaxial tensile behavior and strength of architectural fabric membranes”, Polymer Testing, vol. 82, art. no. 106230, 2020, doi: 10.1016/j.polymertesting.2019.106230.
  • [50] J. Uhlemann and N. Stranghöner, “Refined Biaxial Test Procedures for the Determination of Design Elastic Constants of Architectural Fabrics”, Procedia Engineering, vol. 155, pp. 211-219, 2016, doi: 10.1016/j.proeng.2016.08.022.
  • [51] L. Wang, J. Wu, Ch. Chen, Ch. Zheng, B. Li, S. Ch. Joshi, and K. Zhou, “Progressive failure analysis of 2D woven composites at the meso-micro scale”, Composite Structures, vol. 178, pp. 395-405, 2017, doi: 10.1016/j.compstruct.2017.07.023.
  • [52] P. Kłosowski, K. Michałowska, M. Przyborski, and W. Jurczak, “Testing of Technical Fabrics under Fast Camera Control”, Advances in Science and Technology Research Journal, vol. 17, no. 1, 2023, doi: 10.12913/22998624/158883.
  • [53] A. Ambroziak and P. Kłosowski, “Influence of cyclic frozen and defrost on mechanical properties of polytetrafluoroethylene (PTFE)-coated woven fabrics”, Archives of Civil Engineering, vol. 69, no. 1, pp. 91-104, 2023, doi: 10.24425/ace.2023.144161.
  • [54] C. Van Goethem, M.M. Magboo, M. Mertens, M. Thijs, G. Koeckelberghs, and I.F.J. Vankelecom, “A scalable crosslinking method for PVDF-based nanofiltration membranes for use under extreme pH conditions”, Journal of Membrane Science, vol. 611, art. no. 118274, 2020, doi: 10.1016/j.memsci.2020.118274.
  • [55] ISO (International Organization for Standardization), ISO 1421 Rubber or plastics-coated fabrics – Determination of tensile strength and elongation at brake. Geneva, Switzerland: International Organization for Standardization, 2016.
  • [56] S.S. Shapiro and M.B. Wilk, “An analysis of variance test for normality (Complete samples)”, Biometrika, vol. 52, no. 3-4, pp. 591-611, 1965, doi: 10.2307/2333709.
  • [57] R.M. Heiberger and E. Neuwirth, “One-Way ANOVA”, in R Through Excel. New York, NY: Springer New York, 2009, pp. 165-191, doi: 10.1007/978-1-4419-0052-4_7.
  • [58] T. Górecki and Ł. Smaga, “A comparison of tests for the one-way ANOVA problem for functional data”, Computational Statistics, vol. 30, pp. 987-1010, 2015, doi: 10.1007/s00180-015-0555-0.
  • [59] M.B. Brown and A.B. Forsythe, “Robust Tests for the Equality of Variances”, Journal of the American Statistical Association, vol. 69, no. 346, pp. 364-67, 1974, doi: 10.1080/01621459.1974.10482955.
  • [60] T.J. Cleophas and A.H. Zwinderman, “Bonferroni t-Test”, in Statistical Analysis of Clinical Data on a Pocket Calculator. Dordrecht: Springer Netherlands, 2011, pp. 41-42, doi: 10.1007/978-94-007-1211-9_15.
  • [61] K. Zerdzicki, P. Klosowski, and K. Woznica, “Influence of service ageing on polyester-reinforced polyvinyl chloride-coated fabrics reported through mathematical material models”, Textile Research Journal, vol. 89, no. 8, pp. 1472-1487, 2019, doi: 10.1177/0040517518773374.
  • [62] V. Dobilaitė, M. Jucienė, R. Bliũdžius, and L. Šveikauskaitė, “Investigation of some weathering impacts on tearing properties of PVC-coated fabrics used for architectural purposes”, Journal of Industrial Textiles, vol. 51, no. 3_suppl, pp. 5328S-5346S, 2022, doi: 10.1177/1528083720982384.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-786afefb-488a-46b9-87af-81f580d4d45d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.