PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Low-cost Automatic System for Long-term Observations of Soil Temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The description of the physical parameters characterizing heat transport in the soil medium, especially on a regional scale, requires long-term and high frequency observations of temperature changes in soil profiles. This paper presents a project for a multi-channel, modular and universal data logger for temperature distribution data collecting in the soil profile, based on open electronic components, such as Arduino microcontroller systems and DS18B20 thermometers. The data logger tests were carried out in two profiles. The seven-month tests did not show any errors in the functioning of the measurement set. The presented device requires an average current of 320 µA, which allows for its stable operation on one battery set for about 300 days in temperate climate conditions. The DS18B20 thermometers allow for accurate and stable temperature measurement (the mean absolute error after laboratory calibration was 0.02°C). The cost of a single measurement-registration device was approximately 76 EUR, representing a competitive price in comparison with commercial data loggers. This allows, with relatively low expenditure, the creation of extensive observation networks for the analysis of the heat flow process in high temporal and spatial resolution.
Rocznik
Strony
75--101
Opis fizyczny
Bibliogr. 43 poz., fot., rys., tab., wykr.
Twórcy
  • University of Warsaw, Faculty of Geology, Warsaw, Poland
  • University of Warsaw, Faculty of Geology, Warsaw, Poland
Bibliografia
  • 1. Teleszewski T.J., Krawczyk D.A., Fernandez-Rodriguez J.M., Lozano-Lunar A., Rodero A.: The study of soil temperature distribution for very low-temperature geothermal energy applications in selected locations of temperate and subtropical climate. Energies, vol. 15(9), 2022, 3345. https://doi.org/10.3390/en15093345.
  • 2. Horton R., Wierenga P.J., Nielsen D.R.: Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Science Society of America Journal, vol. 47(1), 1983, pp. 25–32. https://doi.org/10.2136/sssaj1983.03615995004700010005x.
  • 3. An K., Wang W., Zhao Y., Huang W., Chen L., Zhang Z., Wang Q., Li W.: Estimation from soil temperature of soil thermal diffusivity and heat flux in sub-surface layers. Boundary-Layer Meteorology, vol. 158, 2016, pp. 473–488. https://doi.org/10.1007/s10546-015-0096-7.
  • 4. Yang L., Song R., Dong B., Yin L., Fan Y., Zhang B., Wang Z., Wang Y., Dong S.: Processing method of soil temperature time series and its application in geothermal heat flow. Frontiers in Earth Science, vol. 10, 2022, 910328. https://doi.org/10.3389/feart.2022.910328.
  • 5. Seward A., Prieto A.: Determining thermal rock properties of soils in Canterbury, New Zealand: Comparisons between long-term in-situ temperature profiles and divided bar measurements. Renewable Energy, vol. 118, 2018, pp. 546–554. https://doi.org/10.1016/j.renene.2017.11.050.
  • 6. Gruszczyński T., Szostakiewicz-Hołownia M.: Interpretacja zmienności temperatury wody w źródle na wschodnim stoku Zameczków (Tatry Zachodnie) na podstawie ciągłych obserwacji monitoringowych i numerycznego modelu transportu ciepła. Biuletyn Państwowego Instytutu Geologicznego, vol. 475, 2019, pp. 43–50. https://doi.org/10.7306/bpig.5.
  • 7. ONSET: Outdoor Monitoring Solutions. Onset HOBO data loggers set the standard for reliable, accurate data logging for outdoor monitoring applications. https://www.onsetcomp.com/outdoor-monitoring-solutions/ [access: 24.08.2022].
  • 8. Davis Instruments. https://www.davisinstruments.com/pages/data-collection [access: 24.08.2022].
  • 9. Maxim Integrated: iButton High-Capacity Temperature Logger with 122KB Data-Log Memory. https://datasheets.maximintegrated.com/en/ds/DS1925.pdf [access: 24.08.2022].
  • 10. Vickers M., Schwarzkopf L.: A simple method to predict body temperature of small reptiles from environmental temperature. Ecology and Evolution, vol. 6(10), 2016, pp. 3059–3066. https://doi.org/10.1002/ece3.1961.
  • 11. Gandra M., Seabra R., Lima F.P.: A low-cost, versatile data logging system for ecological applications. Limnology and Oceanography: Methods, vol. 13(3), 2015, pp. 115–126. https://doi.org/10.1002/lom3.10012.
  • 12. Ferlan M., Simončič P.: Robust and cost-effective system for measuring and logging of data on soil water content and soil temperature profile. Agricultural Sciences, vol. 3(6), 2012, pp. 865–870. https://doi.org/10.4236/as.2012.36105.
  • 13. Lockridge G., Dzwonkowski B., Nelson R., Powers S.: Development of a lowcost arduino-based sonde for coastal applications. Sensors (Switzerland), vol. 16(4), 2016, 528. https://doi.org/10.3390/s16040528.
  • 14. Akhter T., Ali M., Cha J., Park S., Jang G., Yang K., Kim H.: Development of a data acquisition system for the long-term monitoring of plum (Japanese apricot) farm environment and soil. Journal of Biosystems Engineering, vol. 43(4), 2018, pp. 426–439.
  • 15. Fisher D.K., Woodruff L.K., Anapalli S.S., Pinnamaneni S.R.: Open-source wireless cloud-connected agricultural sensor network. Journal of Sensor and Actuator Networks, vol. 7(4), 2018, 47. https://doi.org/10.3390/jsan7040047.
  • 16. Medojevic M., Medojevic M., Radakovic N., Lazarevic M., Sremcev N.: A conceptual solution of low-cost temperature data logger with relatively high accuracy. International Journal of Industrial Engineering and Management, vol. 9(1), 2018, pp. 53–58.
  • 17. Beddows P.A., Mallon E.K.: Cave pearl data logger: A flexible arduino-based logging platform for long-term monitoring in harsh environments. Sensors (Switzerland), vol. 18(2), 2018, 530. https://doi.org/10.3390/s18020530.
  • 18. Mallon E.K.: The Cave Pearl Project. https://thecavepearlproject.org/ [access: 7.02.2022].
  • 19. World Meteorological Organization: Guide to Instruments and Methods of Observation (WMO-No. 8) Volume I: Measurement of Meteorological Variables. WMO, 2018.
  • 20. Arduino. https://www.arduino.cc/ [access: 24.08.2022].
  • 21. Atmel: ATmega328P: 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash. Datasheet. http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf [access: 9.02.2021].
  • 22. Damanik N., Robiansyah M.R., Apriliana A., Purba S.: Design of energy monitoring system for small scale wind turbine applications. IOP Conference Series: Earth and Environmental Science, vol. 345, 2019, 012003. https://doi.org/10.1088/1755-1315/345/1/012003.
  • 23. Maxim Integrated: Extremely Accurate I2C-Integrated RTC / TCXO / Crystal. https://datasheets.maximintegrated.com/en/ds/DS3231.pdf [access: 9.02.2021].
  • 24. Ali A.S., Zanzinger Z., Debose D., Stephens B.: Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment, vol. 100, 2016, pp. 114–126. https://doi.org/10.1016/j.buildenv.2016.02.010.
  • 25. Borecka A., Sekuła K., Kessler D., Majerski P.: Zastosowanie testowych czujników pomiaru temperatury w quasi-przestrzennych (3D) sieciach pomiarowych w hydrotechnicznych budowlach ziemnych – wyniki wstępne [Application of testing temperature sensors for quasi-dimensional (3D) measurement systems used in measuring hydrotechnical earthworks – prelilinary results]. Przeglad Geologiczny, vol. 65(10/2), 2017, pp. 748–755.
  • 26. Cifuentes H., Montero-Chacón F., Galán J., Cabezas J., Martínez-De la Concha A.: A finite element-based methodology for the thermo-mechanical analysis of early age behavior in concrete structures. International Journal of Concrete Structures and Materials, vol. 13, 2019, 41. https://doi.org/10.1186/s40069-019-0353-0.
  • 27. Zhao X., Li W., Zhou L., Song G.-B., Ba Q., Ou J.: Active thermometry based DS18B20 temperature sensor network for offshore pipeline scour monitoring using K-means clustering algorithm. International Journal of Distributed Sensor Networks, vol. 9(6), 2013, pp. 1–11. https://doi.org/10.1155/2013/852090.
  • 28. Blázquez C.S., Piedelobo L., Fernández-Hernández J., Nieto I.M., Martín A.F., Lagüela S., González-Aguilera D.: Novel experimental device to monitor the ground thermal exchange in a borehole heat exchanger. Energies, vol. 13(5), 2020, 1270. https://doi.org/10.3390/en13051270.
  • 29. Le A.T., Wang L., Wang Y., Li D.: Measurement investigation on the feasibility of shallow geothermal energy for heating and cooling applied in agricultural greenhouses of Shouguang City: Ground temperature profiles and geothermal potential. Information Processing in Agriculture, vol. 8(2), 2021, pp. 251–269. https://doi.org/10.1016/j.inpa.2020.06.001.
  • 30. Chen M.K., Li W.B., Kan J.M.: Remote multi-layer soil temperature monitoring system based on GPRS. Sensors and Transducers, vol. 164(2), 2014, pp. 107–113.
  • 31. Gao W., Wang X., Zeng M., Han C.: Observation scheme for temperature and deformation of permafrost subgrade in Yichun-Bei’an Highway. IOP Conference Series: Earth and Environmental Science, vol. 267, 2019, 052003. https://doi.org/10.1088/1755-1315/267/5/052003.
  • 32. Larwa B.: Investigation of temperature distribution in the ground induced by heat source and under natural conditions. Technical Transactions, vol. 10, 2017, pp. 69–77. https://doi.org/10.4467/2353737xct.17.177.7285.
  • 33. Maxim Integrated: DS18B20 Programmable Resolution 1-Wire Digital Thermometer. https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf [access: 9.02.2021].
  • 34. Maxim Integrated: Curve Fitting the Error of a Bandgap-Based Digital Temperature Sensor. https://www.maximintegrated.com/en/design/technical-documents/app-notes/2/208.html [access: 12.05.2021].
  • 35. Zaszewski D.: Low-cost automatic system for long-term observations of soil temperature – supplementary materials. Mendeley Data, V1, 2022. https://doi.org/10.17632/k5w4v6h5cp.1.
  • 36. Energizer: Cylindrical Primary Lithium Handbook and Application Manual. https://data.energizer.com/pdfs/lithiuml91l92_appman.pdf [access: 31.03.2021].
  • 37. Burton M.: Arduino Temperature Control Library. https://github.com/milesburton/Arduino-Temperature-Control-Library [access: 24.08.2022].
  • 38. Dafflon B., Wielandt S., Lamb J., McClure P., Shirley I., Uhlemann S., Wang C. et al.: A distributed temperature profiling system for vertically and laterally dense acquisition of soil and snow temperature. The Cryosphere, vol. 16, 2022, pp. 719–736. https://doi.org/10.5194/tc-16-719-2022.
  • 39. Abu-Hamdeh N.H.: Thermal properties of soils as affected by density and water content. Biosystems Engineering, vol. 86(1), 2003, pp. 97–102. https://doi.org/10.1016/S1537-5110(03)00112-0.
  • 40. Arkhangelskaya T.A.: Parameters of the thermal diffusivity vs. water content function for mineral soils of different textural classes. Eurasian Soil Science, vol. 53, 2020, pp. 39–49. https://doi.org/10.1134/S1064229320010032.
  • 41. Márquez J.M.A., Bohórquez M.Á.M., Melgar S.G.: Ground thermal diffusivity calculation by direct soil temperature measurement. application to very low enthalpy geothermal energy systems. Sensors (Switzerland), vol. 16(3), 2016, 306. https://doi.org/10.3390/s16030306.
  • 42. Busby J.: Thermal conductivity and diffusivity estimations for shallow geothermal systems. Quarterly Journal of Engineering Geology and Hydrogeology, vol. 49(2), 2016, pp. 138–146. https://doi.org/10.1144/qjegh2015-079.
  • 43. Thomson J.: Observations of thermal diffusivity and a relation to the porosity of tidal flat sediments. Journal of Geophysical Research: Oceans, vol. 115(C5), 2010, C05016. https://doi.org/10.1029/2009JC005968.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78687256-25a9-4340-a4be-73d894f1d1d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.