PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Raman spectroscopy characterization of some Cu, Fe and Zn sulfides and their relevant surface chemical species for flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Raman spectroscopy as a high-resolution characterization technique was used to analyze various pure metal sulfides immersed in water, namely pyrite (FeS2), chalcopyrite (CuFeS2), sphalerite (ZnS), marmatite (Zn1-XFeXS) and galena (PbS). The Raman characterization was undertaken in situ with the minerals immersed in water. Characteristic Raman spectrum that shows the vibrational modes of the atomic bonds in the mineral crystal structure is reported. This spectroscopic technique revealed that marmatite particles are composed of micro-size, perhaps nano-size, zones with different Fe and Zn content. With the intensity of the Fe-S and Zn-S Raman signals, the iron content of the zones was quantified. The copper ion up-take by marmatite particles was studied through this technique. It was found that the up-take of copper ions on the marmatite zones depended on their Fe content. Copper ion up-take occurred more preferentially on the zones of low Fe content than on those of high Fe content. The adsorption of the collector propyl xanthate on pyrite and chalcopyrite was also assessed by Raman spectroscopy. The Raman spectrum revealed that dixanthogen formed on the surface of these sulfides.
Słowa kluczowe
Rocznik
Strony
483--492
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., wz.
Twórcy
  • Departamento de Ingeniería Metalúrgica-UPIIZ, Instituto Politécnico Nacional, Zacatecas, Zac. 98160 México
  • Area de Ingeniería de Minerales, Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí, S. L. P. 78210 México
autor
  • Faculty of Land and Resources Engineering, Kumming Universithy of Science and Technology, Kumming, Yunan, 650093 China
  • Area de Ingeniería de Minerales, Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí, S. L. P. 78210 México
Bibliografia
  • ANDREEV, G. N., BARZEV, A., 2003. Raman spectroscopic study of some chalcopyrite–xanthate flotation products. J. Mol. Struct. 661-662, 325–332.
  • BOUCHARD, M., SMITH, D.C., 2003. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim. Acta, Part A. 59, 2247-2266.
  • BOULTON, A., FORNASIERO, D., RALSTON, J., 2005. Effect of iron in sphalerite on flotation. Miner. Eng., 18, 1120- 1122.
  • CHANDRA, A. P., GERSON, A. R., 2009. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv. Colloid Interface Sci. 145, 97-110.
  • CHEN, Y., CHEN, J., GUO, J., 2010. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite. Miner. Eng. 23, 1120-1130.
  • CORNWELL, J. C., MORSE, J. W., 1987. The characterization of iron sulfide minerals in anoxic marine sediment. Mar. Chem. 22, 193-206.
  • FUERSTENAU, M. C., CHANDER, S., WOODS, R. 2007. Sulfide mineral flotation. Froth Flotation. A Century of Innovation. Eds: M. C. Fuerstenau, G. Jameson, R. H. Yoon. SME, Littleton, Colorado, USA. p. 425-464.
  • GIUDICI DE, G., RICCI, P., LATTANZI, P., ANEDDA, A., 2007. Dissolution of the (001) surface of galena: An in-situ assessment of surface speciation by fluid-cell micro-Raman spectroscopy. Am. Mineral. 92, 518-524.
  • HOPE, G. A., WATLING, K., WOODS, R., 2001. A SERS spectroelectrochemical investigation of the interaction of isopropyl, isobutyl and isoamyl xanthates with silver. Colloids Surf., A. 178, 157–166.
  • HOPE, G. A., WOODS, R., MUNCE, C. G., 2001. Raman microprobe mineral identification. Miner. Eng. 14 (12), 1565- 1577.
  • JIN, J., MILLER, D., DANG, L. X. 2014. Molecular dynamics simulation and analysis of interfacial water at selected sulfide mineral surfaces under anaerobic conditions.Int. J. Min. Process. 128, 57-67.
  • KUMAR, R. S., RAJKUMAR, P., 2014. Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Phys. Technol. 67, 30-41.
  • LASKOWSKI, J. S., LIU, Q., ZHAN, Y., 1997. Sphalerite activation: flotation and electrokinetic studies. Miner. Eng. 10, 787-802.
  • LONG, T., CHEN, Y., SHI, J., CHEN, W., ZHU, Y., ZHANG, CH., BU, X., 2020. Effect of grinding media on the flotation of copper-activated marmatite. Physicochem. Probl. Miner. Process. 56(2), 229-237.
  • OSADCHII, E. G., GORBATY, Y. E., 2010. Raman spectra and unit cell parameters of sphalerite solid solutions (FeXZn1-XS). Geochim. Cosmochim. Acta. 74, 568–573.
  • PIRARD, E. 2004. Multispectral imaging of ore minerals in optical microscopy. Mineral. Mag. 68(2), 323–333.
  • ROBLEDO-CABRERA, A., LÓPEZ-VALDIVIESO, A., PÉREZ-LÓPEZ, J. E., OROZCO-NAVARRO, O. A., 2018. Adsorption study of xanthates on PbSO4 by titration microcalorimetry. J. Therm. Anal. Calorim. 133, 991-999.
  • ROBLEDO-CABRERA, A., OROZCO-NAVARRO, O. A., LÓPEZ-VALDIVIESO, A., 2015. Solubility product and heat of formation of lead alkyl xanthates by microcalorimetric titration. Int. J. Miner. Process. 144, 65-69.
  • SALAMA, W., AREF, M. E., GAUPP, R., 2015. Spectroscopic characterization of iron ores formed in different geological environments using FTIR, XPS, Mössbauer spectroscopy and thermoanalyses. Spectrochim. Acta, Part A. 136, 1816- 1826.
  • SHAPTER, J. G., BROOKER, M. H., SKINNER, W. M., 2000. Observation of the oxidation of galena using Raman spectroscopy. Int. J. Miner. Process. 60, 199–211.
  • SIEW, W., BUCKLEY, A., GONG, B., WOODS, R., LAMB, R. N., FANG, L. L., YANG, Y. W. 2008. Thiolate layers on metal sulfides characterized by XPS, ToF-SIMS and NEXAFS spectroscopy. Min. Eng. 21(12-14), 1026-1037.
  • SOLECKI, J., KOMOSA, J., SZCZYPA, 1979. Copper activation of synthetic sphalerites with various iron contents. Int. J. Miner. Process., 6, 221-228.
  • SOUMYA, D., HENDRY, M. J., 2011. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem. Geol. 290, 101–108.
  • TONG, X., HE, H., RAO, F., LIU, Q., ZHOU, Q. H., 2006. Experimental study on activation of high iron-bearing marmatite. Min. Metall. Eng. 26, 21-22 (in Chenise).
  • TONG, X., SONG, SH., JIAN, H., LOPEZ-VALDIVIESO, A., 2008. Flotation of indium-beard marmatite from multi- metallic ore. Rare Met. 27(2), 107-111.
  • VOGT, H. CHATTOPADHYAY, T., STOLZ, H. J., 1983. Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 and SiP2. J. Phys. Chem. Solids. 44(9), 869-873.
  • WHITE, S. N., 2009. Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chemical Geology. 259, 240-252.
  • WHITE, W. B., 2006. Identification of cave minerals by Raman spectroscopy: New technology for non-destructive analysis. Int. J. Speleol. 35, 103-107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-785e52e4-d910-4378-8ca1-362fc7bbc374
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.