PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Constraints on the Formation of Double Neutron Stars from the Observed Eccentricities and Current Limits on Merger Rates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We employ population synthesis method to model the double neutron star (DNS) population and test various possibilities on natal kick velocities gained by neutron stars after their formation. We first choose natal kicks after standard core collapse supernovae (CCSN) from a Maxwellian distribution with velocity dispersion of σ = 265 km/s as proposed by Hobbs and then modify this distribution by changing σ toward smaller and larger kick values. We also take into account the possibility of NS formation through electron capture supernova. In this case we test two scenarios: zero natal kick or small natal kick, drawn from Maxwellian distribution with σ = 26.5 km/s. We calculate the present-day orbital parameters of binaries and compare the resulting eccentricities with those known for observed DNSs. As an additional test we calculate Galactic merger rates for our model populations and confront them with observational limits. We do not find any model unequivocally consistent with both observational constraints simultaneously. The models with low kicks after CCSN for binaries with the second NS forming through core collapse SN are marginally consistent with the observations. This means that either 14 observed DNSs are not representative of the intrinsic Galactic population, or that our modeling of DNS formation needs revision.
Czasopismo
Rocznik
Strony
37--50
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
  • Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
  • Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
autor
  • Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
autor
  • Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
Bibliografia
  • Andrews, J., Farr, W., Kalogera, V., and Willems, B. 2015, ApJ, 801, 32.
  • Belczynski, K., Kalogera, V., and Bulik, T. 2002, ApJ, 572, 407.
  • Belczynski, K., Kalogera, V., Rasio, F.A., Taam, R.E., Zezas, A., Bulik, T., Maccarone, T.J., and Ivanova, N. 2008, ApJS, 174, 223.
  • Beniamini, P., and Piran, T. 2016, MNRAS, 456, 4089.
  • Berger, E. 2014, Ann. Rev. Astron. Astrophys., 52, 43.
  • Blaauw, A. 1961, Bulletin of the Astronomical Institutes of the Netherlands, 15, 265.
  • Boffin, H.M. J., Hillen, M., Berger, J.P., Jorissen, A., Blind, N., Le Bouquin, J.B., Mikolajewska, J., and Lazareff, B. 2014, A&A, 564, A1.
  • Champion, D.J., et al. 2005, MNRAS, 363, 929.
  • Corongiu, A., Kramer, M., Stappers, B.W., Lyne, A.G., Jessner, A., Possenti, A., D’Amico, N., and Lohmer, O. 2007, A&A, 462, 703.
  • Dominik, M., Belczynski, K., Fryer, C., Holz, D., Berti, E., Bulik, T., Mandel, I., and O’Shaughnessy, R. 2012, ApJ, 759, 52.
  • Dosopoulou, F., and Kalogera, V. 2016a, ApJ, 825, 70.
  • Dosopoulou, F., and Kalogera, V. 2016b, ApJ, 825, 71.
  • Faulkner A.J., et al. 2005, ApJ, 618, L119.
  • Hobbs, G., Lorimer, D.R., Lyne, A.G,. and Kramer, M. 2005, MNRAS, 360, 974.
  • Janssen, G.H., Stappers, B.W.,Kramer, M., Nice, D.J., Jessner, A., Cognard, I., and Purver, M.B. 2008, A&A, 490, 753.
  • Jin, Z., P., Li, X., Cano, Z., Covino, S., Fan, Y., and Wei, D.M. 2015, ApJ, 811, L22.
  • Jones, S., et al. 2013, ApJ, 772, 150.
  • Jones, S., Hirschi, R., and Nomoto, K. 2014, ApJ, 797, 83.
  • Keith, M.J., Kramer, M., Lyne, A.G., Eatough, R.P., Stairs, I.H., Possenti, A., Camilo, F., and Manchester, R.N. 2009, MNRAS, 393, 623.
  • Kim, C., Kalogera, V., and Lorimer, D. 2006, arXiv:astro-ph/0608280.
  • Kim, C., Perera, B., and McLaughlin, M.A. 2015, MNRAS, 448, 928.
  • Kramer, M., et al. 2006, Science, 314, 97.
  • Lazarus, P., et al. 2016, ApJ, 831, 150.
  • Abbott, B.,P., et al. 2016, ApJ, 832, L21.
  • Martinez, J.G., et al. 2015, ApJ, 812, 143.
  • Mandel, I. and O’Shaughnessy, R. 2010, Classical and Quantum Gravity, 27, 114007.
  • Miyaji, S., Nomoto, K., Yokoi, K., and Sugimoto, D. 1980, PASJ, 32, 303.
  • Nomoto, K. 1984, ApJ, 277, 791.
  • Nomoto, K. 1987, ApJ, 322, 206.
  • Peters, P.C. 1964, Phys. Rev., 136, 1224.
  • Petrillo, C., Dietz, A., and Cavaglia, M. 2013, ApJ, 767, 140.
  • Pfahl, E.D., Rappaport, S., Podsiadlowski, Ph., and Spruit, H. 2002, ApJ, 574, 364.
  • Podsiadlowski, P., Langer, N., Poelarends, A.J.T., Rappaport, S., Heger, A., and Pfahl, E. 2004, ApJ, 612, 1044.
  • Sana, H., et al. 2012, Science, 337, 444.
  • Stairs, I.H., Thorsett, S.E., Taylor, J.H., and Wolszczan, A. 2002, ApJ, 581, 501.
  • Swiggum, J.K. et al. 2015, ApJ, 805, 156.
  • Van den Heuvel, E.P.J. 2011, Bulletin of the Astronomical Society of India, 39, 1.
  • Van Leeuwen, J., et al. 2015, ApJ, 798, 118.
  • Walter, R., Lutovinov, A., Bozzo, E., and Tsygankov, S. 2015, The Astronomy and Astrophysics Review, 23, 2.
  • Weisberg, J.M., Nice, D.J., and Taylor, J.H. 2010, ApJ, 722, 1030.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-785cccc1-358c-43f1-b652-6103f2b26e27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.