PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Genetic PID and Feedforward controllers for DC-DC chopper converter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Genetyczne regulatory PID i Feedforward dla przetwornika choppera DC-DC
Języki publikacji
EN
Abstrakty
EN
DC voltage choppers such as buck, boost, and buck/boost are widely used in electrical power applications. Since these choppers are connected directly between DC source such as solar photovoltaic PV systems or batteries, a disturbance or dc source fluctuations may occur at the input of chopper circuits. Therefore, the control systems must be designed and developed in order to reduce such an increase or decrease in voltage. In this paper, two control strategies have been studied and analyzed to reduce system disturbance and minimize the error resulted from noise. The first strategy uses both feedback and feedforward controllers, in this strategy the controllers are designed based on linearization system. The second strategy uses genetic algorithm to tune the integrated proportional, integral, and differentiator PID feedback controller parameters directly for the nonlinear system. The results show that, the genetic PID controller has better performance than the Feedforward/Feedback controller. The mathematical model of the chopper-controlled system using both strategies and the simulation results are extracted using Matlab/Simulink 2018.
PL
Przerywacze napięcia stałego, takie jak buck, boost i buck/boost, są szeroko stosowane w zastosowaniach elektroenergetycznych. Ponieważ przerywacze te są połączone bezpośrednio między źródłami prądu stałego, takimi jak fotowoltaiczne systemy fotowoltaiczne lub akumulatory, na wejściu obwodów przerywacza mogą wystąpić zakłócenia lub wahania źródła prądu stałego. Dlatego też układy sterowania muszą być projektowane i rozwijane w celu ograniczenia takiego wzrostu lub spadku napięcia. W niniejszym artykule zbadano i przeanalizowano dwie strategie sterowania w celu zmniejszenia zakłóceń systemu i zminimalizowania błędu wynikającego z hałasu. Pierwsza strategia wykorzystuje zarówno regulatory sprzężenia zwrotnego, jak i sprzężenia do przodu, w tej strategii regulatory są projektowane w oparciu o system linearyzacji. Druga strategia wykorzystuje algorytm genetyczny do dostrojenia parametrów zintegrowanego regulatora proporcjonalnego, całkowego i różniczkowego ze sprzężeniem zwrotnym PID bezpośrednio dla systemu nieliniowego. Wyniki pokazują, że genetyczny regulator PID ma lepszą wydajność niż regulator sprzężenia zwrotnego/zwrotnego. Model matematyczny systemu sterowanego chopperem wykorzystujący obie strategie i wyniki symulacji są wyodrębniane za pomocą Matlab/Simulink 2018.
Rocznik
Strony
30--35
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Electrical Engineering, College of Engineering, Al-Ahliyya Amman University, Jordan
  • Department of Electrical Power and Mechatronics Engineering, College of Engineering, Tafila Technical University, Jordan
Bibliografia
  • 1. Thompson, M.T. "Notes 01" (PDF). Introduction to Power Electronics. Thompson Consulting, Inc.
  • 2. R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA, USA: Kluwer, 2011.
  • 3. F. Misoc, M. M. Morcos, and J. Lookadoo, “Effect of DC-DC converter topologies and operation on the electrical performance of fuel cells,” Electric Power Compon. Syst., vol. 38, no. 7, pp. 851–861, May 2010.
  • 4. Boeing, G. (2016). "Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction". Systems. 4 (4): 37. doi:10.3390/systems4040037.
  • 5. L. Calderone, L. Pinola, and V. Varoli, “Optimal feed-forward compensation for PWM DC/DC converters with „linear‟ and „quadratic‟ conversion ratio,” IEEE Trans. Power Electron., vol. 7, no. 2, pp. 349–355, Apr. 1992.
  • 6. C. Yao, X. Ruan, W. Cao, and P. Chen, “A two-mode control scheme with input voltage feed-forward for the two-switch buck-boost DC–DC converter,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 2037–2048, Apr. 2014.
  • 7. R. Ghosh and G. Narayanan, “Generalized feedforward control of single phase PWM rectifiers using disturbance observers,” IEEE Trans. Ind.Electron., vol. 54, no. 2, pp. 984–993, Apr. 2007.
  • 8. S.-C. Tan, Y. M. Lai, C. K. Tse, and M. K. H. Cheung, “Adaptive feedforward and feedback control schemes for sliding mode controlled power converters,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 182–192, Jan. 2006.
  • 9. A. Kelly and K. Rinne, “Control of DC-DC converters by direct pole placement and adaptive feedforward gain adjustment,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2005, pp. 1970–1975.
  • 10. M. Cespedes and J. Sun, “Adaptive control of grid-connectedinverters based on online grid impedance measurements,” IEEE Trans. Sustainable Energy, vol. 5, no. 2, pp. 516–523, Apr. 2014.
  • 11. M. K. Kazimierczuk and L. A. Starman, “Dynamic performance of PWM DC-DC boost converter with input voltage feedforward control,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 12, pp. 1473–1480, Dec. 1999.
  • 12. M. K. Kazimierczuk and A. J. Edstrom, “Open-loop peak voltage feedforward control of PWM buck converter,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 5, pp. 740–746, May 2000.
  • 13. Yan Bao, Member, IEEE, Le Yi Wang, Fellow, IEEE, Caisheng Wang, Senior Member, IEEE, Jiuchun Jiang, Senior Member, IEEE, Chenguang Jiang, Member, IEEE, and Chen Duan, Member, IEEE '' Adaptive Feedforward Compensation for Voltage Source Disturbance Rejection in DC–DC Converters'' IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2018
  • 14. B. K. Bose, "Global energy scenario and impact of power electronics in 21st century," IEEE Transactions on Industrial Electronics, vol. 60, pp. 2638-2651, 2012.
  • 15. I. Colak, E. Kabalci, G. Fulli, and S. Lazarou, "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, vol. 47, pp. 562-579, 2015.
  • 16. L. Hassaine, E. OLias, J. Quintero, and V. Salas, "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, vol. 30, pp. 796-807, 2014.
  • 17. J. Jana, H. Saha, and K. D. Bhattacharya, "A review of inverter topologies for single-phase grid-connected photovoltaic systems," Renewable and Sustainable Energy Reviews, vol. 72, pp. 1256-1270, 2017.
  • 18. J. Pinto, B. Exposto, V. Monteiro, L. F. Monteiro, C. Couto, and J. L. Afonso, "Comparison of current-source and voltage-source Shunt Active Power Filters for harmonic compensation and reactive power control," in IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, 2012, pp. 5161-5166.
  • 19. K. Chen, S. L. Tian, and Y. H. Cheng, "Research on the Suppression of Input Power Disturbance for Single-Phase Photovoltaic Grid-Connected Inverter," in Applied Mechanics and Materials, 2012, pp. 243-246.
  • 20. F. A. Khan and S. Nisar, "Design and analysis of feedback control system," in 2018 International Conference on Information and Communications Technology (ICOIACT), 2018, pp. 16-24.
  • 21. M. Yiming, P. Boyu, L. Gongqing, L. Yongwen, and Z. Deliang, "Feedforward Feedback Control Based on DQN," in 2020 Chinese Control And Decision Conference (CCDC), 2020, pp. 550-554.
  • 22. S. Mohamed, A. Zayed, and O. Abolaeha, "New Feed-Forward/Feedback Generalized Minimum Variance Selftuning Pole-placement Controller," in Proceeding of World Academy of Science, Engineering and Technology, 2009, pp. 998-1001.
  • 23. M. Xinchen, Z. Changbao, and H. Cungang, "Auto disturbance rejection control of single-phase PWM inverter," in 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 2015, pp. 1251-1254.
  • 24. S. Li and H. Xiong, "Active disturbance rejection control of single phase grid connected inverter," in 2016 IEEE International Conference on Mechatronics and Automation, 2016, pp. 2344-2348.
  • 25. J. Maysse, O. Carranza, R. Ortega, and J. Rodriguez, "Design ofthe Control of a Single-Phase Inverter in Island Mode to Improve both the Transient Response and the Disturbances Rejection in a Microgrid," in 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&DLA), 2018, pp. 1-5.
  • 26. S. Baek, Y. Cho, and S. Yeo, "Improved Voltage Control Scheme for Single-Phase UPS Inverter with Repetitive Current Controller," in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1482-1487.
  • 27. E. Demirok, D. Sera, R. Teodorescu, P. Rodriguez, and U. Borup, "Clustered PV inverters in LV networks: An overview of impacts and comparison of voltage control strategies," in 2009 IEEE Electrical Power & Energy Conference (EPEC), 2009, pp. 1-6.
  • 28. A. Chatterjee and K. B. Mohanty, "Current control strategies for single phase grid integrated inverters for photovoltaic applications-a review," Renewable and Sustainable Energy Reviews, vol. 92, pp. 554-569, 2018.
  • 29. M. Monfared and S. Golestan, "Control strategies for single-phase grid integration of small-scale renewable energy sources: A review," Renewable and Sustainable Energy Reviews, vol. 16, pp. 4982-4993, 2012.
  • 30. D. Dong, T. Thacker, R. Burgos, F. Wang, and D. Boroyevich,"On zero steady-state error voltage control of single-phase PWM inverters with different load types," IEEE Transactions on Power Electronics, vol. 26, pp. 3285-3297, 2011.
  • 31. J. Baek, S.-e. Kim, and S. Kwak, "Predictive control method for load current of single-phase voltage source inverters," in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 2256-2260.
  • 32. L. Calderone, L. Pinola, and V. Varoli, "Optimal feed-forward compensation for PWM DC/DC converters with'linear'and'quadratic'conversion ratio," IEEE transactions on power electronics, vol. 7, pp. 349-355, 1992.
  • 33. Y. A.-R. I. Mohamed and E. F. El-Saadany, "A control methodof grid-connected PWM voltage source inverters to mitigate fast voltage disturbances," IEEE Transactions on Power Systems, vol. 24, pp. 489-491, 2009.
  • 34. M. Ding, R. Yokoyama, and J. She, "Current control for the grid-connected single-phase photovoltaic inverter in microgrid based on an equivalent-input-disturbance approach," in ISGT 2014, 2014, pp. 1-5.
  • 35. Y. Bao, C. Wang, J. Jiang, C. Jiang, and C. Duan, "Adaptivefeedforward compensation for voltage source disturbance rejection in DC–DC converters," IEEE Transactions on Control Systems Technology, vol. 26, pp. 344-351, 2017.
  • 36. Obeidat, Mohammad A., Abdulaziz Almutairi, Saeed Alyami, Ruia Dahoud, Ayman M. Mansour, Al-Motasem Aldaoudeyeh, and Eyad S. Hrayshat 2021. "Effect of Electric Vehicles Charging Loads on Realistic Residential Distribution System in Aqaba-Jordan" World Electric Vehicle Journal 12, no. 4: 218. https://doi.org/10.3390/wevj12040218
  • 37. Mansour, Ayman M., Abdulaziz Almutairi, Saeed Alyami, Mohammad A. Obeidat, Dhafer Almkahles, and Jagabar Sathik. 2021. "A Unique Unified Wind Speed Approach to Decision-Making for Dispersed Locations" Sustainability 13, no. 16: 9340. https://doi.org/10.3390/su13169340
  • 38. Mohammad A Obeidat, “Real-Time DC Servomotor Identification and Control of Mechanical Braking System for Vehicle-to-Vehicle Communication”, International Journal of Computer Applications 182(40): 20-30, February 2019.
  • 39. Mohammad A Obeidat, L.Y. Wang, F. Lin, “Real-Time Parameter Estimation of PMDC Motors using Quantized Sensors”.IEEE Transactions on Vehicular Technology, Vol. 62, Issue 6, pp. 1-10, July 2013.
  • 40. M. A. Obeidat, "Modelling and Control of a Chopper using Feedback and Feedforward Control Schemes," IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), vol. Volume 13, pp. PP 06-15, 2018.
  • 41. M. Obeidat and A. Hamad, "Applying two controller schemes to improve input tracking and noise reduction in DC-DC converters" Przegląd Elektrotechniczny, vol. 95, 2019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-785ccc85-1ff5-446d-888a-f8ee5d66a884
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.