Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Functionalized halloysite was used as a support for the immobilization of an enzyme. The surface of halloysite was modified with amino (–NH), epoxy (–C(O)C) and carbonyl (–C=O) groups. Both unmodified and modified forms of the support underwent a comprehensive physicochemical and structural evaluation, including morphological, structural, thermogravimetric and spectroscopic analysis. Aminoacylase from Aspergillus melleus was used as the enzyme in the immobilization process. The process of immobilization by adsorption was performed for 1, 6 and 24 h using different concentrations of enzyme solution (0.5, 1 and 3 mg/cm3). The quantity of aminoacylase loaded onto the support was calculated by the Bradford method. Free and immobilized aminoacylase were used to catalyze the deacetylation of N-acetyl-L-methionine. Additionally, the thermal and chemical stability of the obtained biocatalytic systems were evaluated, as well as the reusability of the immobilized systems. The biocatalytic system with amino groups demonstrated activity above 70% in the pH range 4–9 and 60% in the temperature range 30–70 °C. Aminoacylase immobilized on amino-functionalized halloysite also retains around 50% of its initial activity after five reaction cycles.
Rocznik
Tom
Strony
128--139
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965, Poznan, Poland
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965, Poznan, Poland
Bibliografia
- ABDULLAYEV E., LVOV Y., 2013. Halloysite clay nanotubes as a ceramic „skeleton” for functional biopolimer composites with sustained drug release, J. Mater. Chem. B 1, 2894-2903.
- BRADFORD M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248-254.
- CAVALLARO G., LAZZARA G., MILIOTO S., 2011. Dyspersion of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study, Langmuir 27, 1158-1167.
- CHAO C., LIU J., WANG J., ZHANG Y., ZHANG B., ZHANG Y., XIANG X., CHEN R., 2013. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization, ACS Appl. Mater. Interfaces 5, 10559-10564.
- CIESIELCZYK F., BARTCZAK P., ZDARTA J., JESIONOWSKI T., 2017. Active MgO-SiO2 hybrid material for organic dye removal: a mechanism and interaction study of the adsorption of C.I. Acid Blue 29 and C.I. Basic Blue 9, J. Environ. Manage. 204, 123-135.
- DENG S., ZHANG J., YE L., WU J., 2008. Toughening epoxies with halloysite nanotubes, Polymer 49, 5119-5127.
- DONG T., ZHAO L., HUANG Y., TAN X., 2010. Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive. Bioresource Technol. 101, 6569-6571.
- DU M., GUO B., JIA D., 2010. Newly emerging applications of halloysite nanotubes: a review, Polym. Int. 59, 574-582.
- ELIAS N., CHANDREN S., RAZAK F. I. A, WIDODO J. J. N. WAHAB R. A., 2018. Characterization, optimization and stability studies on Candida rugose lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass, Int. J. Biol. Macromol. 114, 306-315.
- ERPEK C. E. Y., OZKOC G., YILMAZER U., 2017. Comparison of natural halloysite with synthetic carbon nanotubes in poly(lactic acid) based composites, Polym. Compos. 38, 2337-2346.
- GAAZ T. S., SULONG A. B., KADHUM A. A. H., AL-AMIERY A. A., NASSIR M. H., JAAZ A. H., 2017. The impact of halloysite on the thermo-mechanical properties of polymer composites, Molecules 22, 838-858.
- JESIONOWSKI T., KRYSZTAFKIEWICZ A., 2001. Influence of silane coupling agents on surface properties of precipitated silicas, J. Non-Cryst. Solids 277, 45-47.
- KADAM A. A., JANG J., LEE D. S., 2017. Supermagnetically tuned halloysite nanotubes functionalized with aminosilane for covalent laccase immobilization, ACS Appl. Mater. Interfaces 9, 15492-15501.
- KIM H. J., SUMA Y., LEE S. H., KIM J. A., KIM H. S., 2012. Immobilization of horseradish peroxidase onto clay minerals using soil organic matter for phenol removal, J. Mol. Cat. B 83, 8-15.
- KOLODZIEJCZAK-RADZIMSKA A., JESIONOWSKI T., KRYSZTAFKIEWICZ A., 2010. Obtaining zinc oxide from aqueous solution of KOH and Zn(CH3COO)2, Physicochem. Probl. Miner. Process. 44, 93-102.
- KOLODZIEJCZAK-RADZIMSKA A., 2017. Functionalized Stober silica as a support in immobilization process of lipase from Candida rugosa, Physicochem. Probl. Miner. Process. 53, 878-892.
- KOLODZIEJCZAK-RADZIMSKA A., ZDARTA J., JESIONOWSKI T., 2018. Physicochemical and catalytic properties of acylase I from Aspergillus melleus immobilized on amino- and carbonyl-grafted Stober silica, Biotech. Progress, 34, 767-777.
- KUMAR-KRISHNAN S., HERNANDEZ-RANGEL A., PAL U., CEBALLOS-SANCHEZ O., FLORES-RUIZ F. J., PROKHOROV E., ARIAS DE FUENTES O., ESPARZA R., MEYYAPPANG M., 2016. Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing, J. Mater. Chem. B 4, 2553-2560.
- LVOV Y. M., DEVILLIERS M. M., FAKHRULLIN R. F., 2016. The application of halloysite tubule nanoclay in drug delivery, Expert. Opin. Drug. Deliv. 5247, 1-10.
- MASSARO M., LAZZARA G., MILIOTO S., NOTOA R., RIELA S., 2017. Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications, J. Mater. Chem. B 5, 2867-2882.
- ORREGO C.E., SALGADO N., VALENCIA J.S., GIRALDO G.I., GIRALDO O.H., CARDONA C.A., 2010. Novel chitosan membranes as support for lipases immobilization: characterization aspects, Carbohyd. Polym., 79, 9-16.
- PANDEY G., MUNGUAMBE D. M., THARMAVARAM M., RAWTANI D., AGRAWAL Y.K., 2017. Halloysite nanotubes - an efficient ‘nano-support’ for the immobilization of α-amylase, Appl. Clay Sci. 136, 184-191.
- TERZOPOULOU Z., PAPAGEORGIOU D. G., PAPAGEORGIOU G. Z., BIKIARIS D. N., 2018. Effect of surface functionalization of halloysite nanotubes on synthesis and thermal properties of poly(ε-caprolactone), J. Mater. Sci. 53, 6519-6541.
- TOOGOOD H. S., HOLLONGSWORTH E. J., BROWN R. C., TAYLOR I. N., TAYLOR S. J. C., MCCAUGE R., LITTLECHILD J. A., 2002. A thermostable L-aminoacylase from thermococcus litoralis: cloning, overexpression, characterization and applications in biotransformations, Extremophiles 6, 111-122.
- TULLY J., YENDLURI R., LVOV Y., 2016. Halloysite clay nanotubes for enzyme immobilization, Biomacromolecules 17, 615-621.
- YOUSHKO M. I., VAN LANGEN L. M., SHELDON R. A., SVEDAS V. K., 2004. Application of aminoacylase I to the enantioselective resolution of α-amino acid esters and amides, Tetrahedron Asymmetr. 15, 1933–1936.
- YUAN P., TAN D., ANNABI-BERGAYA F., 2015. Properties and applications of halloysite nanotubes: recent research advances and future prospects, Appl. Clay Sci. 112-113, 75-93.
- VAIDYA B. K., KUWAR S. S., GOLEGAONKAR S. B., NENE S. N., 2012. Preparation of cross-linked aggregates of L-aminoacylase via co-aggregation with polyethyleneimine, J. Mol. Catal. B 74, 184-191.
- ZHANG Y., TANG A., YANG H., OUYANG J., 2016. Applications and interfaces of halloysite nanocomposites, Appl. Clay Sci. 118, 8-17.
- ZHAI R., ZHANG B., LIU L., XIE Y., ZHANG H., LIU J., 2010. Immobilization of enzyme biocatalyst on natural halloysite nanotubes, Catal. Commun. 12, 259-263.
- ZHU K., DUAN Y., WANG F., GAO P., JIA H., MA C., WANG C., 2017. Silane-modifed halloysite/Fe3O4 nanocomposites simulataneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption, Chem. Eng. J. 311, 236-246.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7859cdb4-347f-409e-b384-b5d87b2fe2d4