PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The analysis of influence of fuel spray angle on NOx fraction in the exhaust gas from marine 4-stroke diesel engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manuscript presents the analysis of influence of fuel spray angle on NOx fraction in the exhaust gas emitted from marine 4-stroke diesel engine. Analysis is based on computational fluid dynamic (CFD) model designed because of the motion mesh of combustion chamber of the marine engine cylinder and air inlet and exhaust gas ducts. Presented model consists of models of fuel injection into combustion chamber, breaking-up and evaporation of the fuel, mixing with air and turbulent combustion with heat transfer to construction elements of the engine cylinder. Mentioned CFD model is validated according to boundary and initial conditions taken from direct measurements. The chosen research object is laboratory 4-stroke turbocharged Diesel engine with direct injection of the fuel and mechanically controlled of both cylinder valves and the injector. The conclusion from the analysis is that the increase of fuel spray angle causes the increase of maximum speed of kinetic phase of the combustion and the decrease of maximum speed of diffusion phase of the combustion. The effect of this is the increase of maximum combustion pressure and the decrease of maximum combustion temperature. The result of presented changes in combustion process is the increase of NOx fraction in the exhaust gas. It should be noted that extended increase of the fuel spray angle cause close-up the fuel spray to the cylinder heads wall and the decrease of NOx fraction in the exhaust gas.
Słowa kluczowe
Twórcy
autor
  • Gdynia Maritime University Department of Engineering Sciences Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 6901434, fax: +48 58 6901399
Bibliografia
  • [1] Reitz, R. D., Directions in internal combustion engine research, Combust Flame, Vol. 160(1), pp. 1-8, 2013.
  • [2] Payri, F., Benajes, J., Margot, X., Gil. a., CFD modelling of the in-cylinder flow in direct-injection Diesel engines, Comput Fluids, Vol. 33(8), pp. 995-1021, 2004.
  • [3] Verbiezen, K., Donkerbroek, A. J., Klein-Douwel R. J. H. et al. Diesel combustion: In-cylinder NO concentrations in relation to injection timing, Combust Flame, Vol. 151(1-2), pp. 333-346, 2007.
  • [4] Ghasemi, A., Barron, R. M., Balachandar, R., Spray-induced air motion in single and twin ultra-high injection diesel sprays, Fuel, Vol. 121, pp. 284-297, 2014.
  • [5] Gao, J., Park, S. W., Wang, Y., Reitz, R. D., Moon S, Nishida K. Simulation and analysis of group-hole nozzle sprays using a gas jet superposition model, Fuel, Vol. 89(12), pp. 3758-3772, 2010.
  • [6] Park, S. W., Reitz, R. D., A gas jet superposition model for CFD modelling of group-hole nozzle sprays, Int J Heat Fluid Flow, Vol. 30(6), pp. 1193-1201, 2009.
  • [7] Park, S. W., Reitz, R. D., Optimization of fuel/air mixture formation for stoichiometric diesel combustion using a 2-spray-angle group-hole nozzle, Fuel, Vol. 88(5), pp. 843-852, 2009.
  • [8] Jaworski, P., Kowalski, J., 3D mesh model for RANS numerical research on marine 4-stroke engine, Journal of Polish CIMAC, Vol. 9-1, pp. 87-94, 2014.
  • [9] Kowalski, J., Analysis Parameters Atomization and Evaporation of Fuel from the 4-Stroke Marine Engine Injector, Zeszyty Naukowe AM, Nr 83, pp. 98-109, 2014 (in Polish).
  • [10] Kowalski, J., An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions, Applied Thermal Engineering, Vol. 65, pp. 469-476, 2014.
  • [11] Liu, A. B., Reitz, R. D., Modeling the Effects of Drop Drag and Break-up on Fuel Sprays, SAE Technical Paper, No. 930072, 1993.
  • [12] Wakisaka, T. et al., Numerical Prediction of Mixture Formation and Combustion Processes in Premixed Compression Ignition Engines, COMODIA, pp. 426, 2001.
  • [13] Dukowicz, J.K., Quasi-steady droplet change in the presence of convection, Informal Report Los Alamos Scientific Laboratory, LA7997-MS.
  • [14] Hanjalić, K., Popovac, M., Hadžiabdić, M., A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD, International Journal of Heat and Fluid Flow, Vol. 25-6, pp. 1047-1051, 2004.
  • [15] Marble, F. E., Broadwell, J. E., The Coherent Flame Model for Turbulent Chemical Reactions, Technical Report TRW-29314-6001-RU-00, USA 1977.
  • [16] Kowalski, J., The Model of the Combustion Process in Four-Stroke Marine Engine, Mechanik, 2015 (in press, in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78521bb0-05e0-4b24-8403-b07d259d6d34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.