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Abstract 

Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the 

system multistate safety functions are defined. The mean values and variances of the multistate systems 

lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are 

defined. The multi-state system risk function and the moment of exceeding by the system the critical safety 

state are introduced. The exemplary safety structures of the multistate systems with ageing components are 

defined and their safety functions are determined. As a particular case, the safety functions of the considered 

multistate systems composed of components having exponential safety functions are determined. Applications 

of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics  

of the oil piping transportation system is presented as well. 

 

1. Introduction 

Taking into account the importance of the safety and 

operating process effectiveness of real technical 

systems it seems reasonable to expand the two-state 

approach [11], [14] to multi-state approach [1]-[4], 

[9]-[10], [14], [18]-[20] in safety analysis. The 

assumption that the systems are composed of multi-

state components with safety states degrading in time 

[11], [14], [18]-[20] gives the possibility for more 

precise analysis of their safety and operational 

processes’ effectiveness. This assumption allows us 

to distinguish a system safety critical state to exceed 

which is either dangerous for the environment or 

does not assure the necessary level of its operation 

process effectiveness. Then, an important system 

safety characteristic is the time to the moment of 

exceeding the system safety critical state and its 

distribution, which is called the system risk function. 

This distribution is strictly related to the system 

safety function that are basic characteristics of the 

multi-state system. The safety models of the 

considered here typical multistate system structures 

can be applied in the safety analysis of real complex 

technical systems. They may be successfully applied, 

for instance, to safety analysis, identification, 

prediction and optimization of the critical 

infrastructures.  

2. Safety analysis of multistate systems  

In the multistate safety analysis to define the system 

with degrading components, we assume that: 

– n is the number of the system components,  

– Ei, i = 1,2,...,n, are components of a system, 

– all components and a system under consideration 

have the safety state set {0,1,...,z}, ,1z  

– the safety states are ordered, the safety state 0 is 

the worst and the safety state z is the best,  

– Ti(u), i = 1,2,...,n, are independent random 

variables representing the lifetimes of 

components Ei in the safety state subset 

{u,u+1,...,z}, while they were in the safety state z 

at the moment t = 0,   

– T(u) is a random variable representing the lifetime 

of a system in the safety state subset {u,u+1,...,z} 

while it was in the safety state z at the moment  

t = 0, 

– the system states degrades with time t, 

– si(t) is a component Ei safety state at the moment 

t, ),,0 t  given that it was in the safety state z 

at the moment t = 0,   

– s(t) is a system S safety state at the moment t, 

),,0 t  given that it was in the safety state z at 

the moment t = 0. 
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worst safety state                                 best safety state 
 

Figure 1. Illustration of a system and components 

safety states changing 

 

The above assumptions mean that the safety states of 

the system with degrading components may be 

changed in time only from better to worse [6], [11], 

[14], [18]-[20]. The way in which the components 

and the system safety states change is illustrated in 

Figure 1.  

 

Definition 1. A vector  

 

   Si(t , ) = [Si(t,0),Si(t,1),...,Si(t,z)], ),,0 t        (1) 

   i = 1,2,...,n, 

 

where 

 

   Si(t,u) = P(si(t)  u  si(0) = z) = P(Ti(u) > t),        (2) 

   ),,0 t  u = 0,1,...,z,  

 

is the probability that the component Ei is in the 

safety state subset },...,1,{ zuu   at the moment t, 

),,0 t  while it was in the safety state z at the 

moment t = 0, is called the multi-state safety function 

of a component Ei.  

The safety functions Si(t,u), ),,0 t  u = 0,1,...,z, 

defined by (2) are called the coordinates of the 

component Ei, i = 1,2,...,n, multistate safety function 

Si(t , ) given by (1). Thus, the relationship between 

the distribution function Fi(t,u) of the component Ei, 

i = 1,2,...,n, lifetime Ti(u) in the safety state subset 

},...,1,{ zuu   and the coordinate Si(t,u) of its 

multistate safety function is given by  

 

   Fi(t,u) = P(Ti(u)   t) = 1 - P(Ti(u) > t) = 1 - Si(t,u), 

   ),,0 t  u = 0,1,...,z. 

 

Under Definition 1 and the agreements, we have the 

following property of the component multistate 

safety function coordinates  

 

   Si(t,0)  Si(t,1)  . . .  Si(t,z), ),,0 t   

   i = 1,2,...,n. 

 

Further, if we denote by      

 

   pi(t,u) = P(si(t) = u  si(0) = z), ),,0 t  

   u = 0,1,...,z, 

 

the probability that the component Ei is in the safety 

state u at the moment t, while it was in the safety 

state z at the moment t = 0, then by (1)   

 

   Si(t,0) = 1, Si(t,z) = pi(t,z), ),,0 t                    (3) 

   i = 1,2,...,n, 

 

and 

 

   ),1,(),(),(  utSutSutp
iii  ,1,...,1,0  zu   (4) 

   ),,0 t  i =1,2,...,n.              

 

Moreover, if  

 

   1),( utS
i  for ,0t u = 1,2,...,z, i = 1,2,...,n, 

 

then  

 

   )(u
i

  = 


0

,),( dtutS
i  u = 1,2,...,z,   i=1,2,...,n,     (5) 

 

is the mean lifetime of the component Ei in the safety 

state subset },,...,1,{ zuu    

 

   
2)]([)()( uunu

iii
  , u = 1,2,...,z,               (6) 

   i = 1,2,...,n,                                                               

 

where  

 

   


0

),(2)( dtuttSun
ii , u = 1,2,...,z, i = 1,2,...,n,   (7) 

 

is the standard deviation of the component Ei lifetime 

in the safety state subset },...,1,{ zuu   and     

 

   )(u
i

  = 


0

,),( dtutp
i u = 1,2,...,z, i = 1,2,...,n,     (8) 

 

is the mean lifetime of the component Ei in the safety 

state u, in the case when the integrals defined by (5), 

(7) and (8) are convergent.  

Next, according to (3), (4), (5) and (8), we have 

 

   ),1()()(  uuu
iii

  ,1,...,1,0  zu  

   ),()( zz
ii

   i = 1,2,...,n.                                  (9) 

 

Definition 2. A vector 

 

   S(t , ) = [S(t,0),S(t,1),...,S(t,z)], ),,0 t          (10) 

 

where 
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   S(t,u) = P(S(t)  u  S(0) = z) = P(T(u) > t),       (11) 

   ),,0 t  u = 0,1,...,z, 

 

is the probability that the system is in the safety state 

subset },...,1,{ zuu   at the moment t, ),,0 t  

while it was in the safety state z at the moment ,0t  

is called the multi-state safety function of this 

system.  

The safety functions S(t,u), ),,0 t  u = 0,1,...,z, 

defined by (11) are called the coordinates of the 

system multistate safety function S(t , ) given by 

(10). Consequently, the relationship between the 

distribution function F(t,u) of the system S lifetime 

T(u) in the safety state subset },...,1,{ zuu   and the 

coordinate S(t,u) of its multistate safety function is 

given by 

 

   F(t,u) = P(T(u)   t) = 1 - P(T(u) > t) = 1 - S(t,u),  

   ),,0 t  u = 0,1,...,z. 

 

The exemplary graph of a four-state (z = 3) system 

safety function 

 

   S(t , ) = [1, S(t,1), S(t,2), S(t,3)], ),,0 t  

 

is shown in Figure 2. 

 

 
 

Figure 2. The graph of a four-state system safety 

function ),( tS  
coordinates 

 

Under Definition 2, we have 

 

   S(t,0)  S(t,1)  . . .  S(t,z), ),,0 t  

 

and if 

 

   p(t,u) = P(S(t) = u  S(0) = z), ),,0 t             (12) 

   u = 0,1,...,z,   

 

is the probability that the system is in the safety state 

u at the moment t, ),,0 t  while it was in the 

safety state z at the moment t = 0, then  

  
   S(t,0) = 1, S(t,z) = p(t,z), ),,0 t                  (13) 

 

and  

 

   p(t,u) = S(t,u) – S ),1,( ut  ,1,...,1,0  zu       (14) 

   ).,0 t  

 

Moreover, if  

 

   S(t,u) = 1 for t  0, u = 1,2,...,z, 

 

then 

 

   )(u = 


0

,),( dtutS  u = 1,2,...,z,                         (15) 

 

is the mean lifetime of the system in the safety state 

subset },,...,1,{ zuu   

 

   2)]([)()( uunu   , u = 1,2,...,z,                (16) 

 

where 

 

   


0

2)( tun S(t,u)dt, u = 1,2,...,z,                       (17) 

 

is the standard deviation of the system lifetime in the 

safety state subset },...,1,{ zuu   and moreover 

 

   


0

,),()( dtutpu  u = 1,2,...,z,              (18) 

 

is the mean lifetime of the system in the safety state 

u while the integrals (15), (17) and (18) are 

convergent.  

Additionally, according to (13), (14), (15) and (18), 

we get the following relationship  

 

   ),1()()(  uuu   ,1,...,1,0  zu   

   ).()( zz                                                     (19) 

 

Definition 3. A probability  

 

   r(t) = P(S(t) < r  S(0) = z) = P(T(r)  t), ),,0 t  

 

that the system is in the subset of safety states worse 

than the critical safety state r, r {1,...,z} while it 

was in the safety state z at the moment t = 0 is called 

 

)1,(tS  

)2,(tS  )3,(tS  

1)0,( tS  
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a risk function of the multi-state system [6], [11], 

[14]. 

Under this definition, from (11), we have     

 

   r(t) = 1  P(S(t)  r  S(0) = z) = 1  S(t,r),       (20) 

   ),,0 t                                                           

 

and if  is the moment when the system risk exceeds 

a permitted level , then   

 

    r ),(1                                                 (21) 

 

where r )(1 t , if it exists, is the inverse function of the 

system risk function r(t).  

The exemplary graph of a four-state system risk 

function for the critical safety state r = 2  

 

   r(t) = 1 - S(t,2), ),,0 t  

 

corresponding to the safety function illustrated in 

Figure 2 is shown in Figure 3. 

 

 
 

Figure 3. The graph of a four-state system risk 

function )(tr  

 

3. Safety structures of multistate systems 
 

Now, after introducing the notion of the multistate 

safety analysis, we may define basic multi-state 

safety structures. 

 

Definition 4. A multistate system is called series if its 

lifetime T(u) in the safety state subset },...,1,{ zuu   

is given by  

 

   T(u) = )}({min
1

uT
i

ni
, u = 1,2,...,z. 

 

The number n  is called the system structure shape 

parameter. 

The above definition means that a multistate series 

system is in the safety state subset },...,1,{ zuu   if 

and only if all its n  components are in this subset of 

safety states. That meaning is very close to the 

definition of a two-state series system considered in a 

classical reliability [11], [14] analysis that is not 

failed if all its components are not failed. This fact 

can justify the safety structure scheme for a 

multistate series system presented in Figure 4.  

 

 
 

Figure 4. The scheme of a series system safety 

structure 

 

It is easy to work out that the safety function of the 

multistate series system is given by the vector [6], 

[11]-[15] 

 

    ),( tS  = [1, )1,(tS ,..., ),( ztS ]                            (22) 

 

with the coordinates 

 

   ),( utS  = 


n

i
i

utS
1

),( , ),,0 t  u = 1,2,...,z.   (23) 

 

Definition 5. A multistate system is called parallel if 

its lifetime T(u) in the safety state subset  

},...,1,{ zuu   is given by  

 

   T(u) = )}({max
1

uT
i

ni
, u = 1,2,...,z. 

 

The number n  is called the system structure shape 

parameter. 

The above definition means that the multistate 

parallel system is in the safety state subset 

},...,1,{ zuu   if and only if at least one of its n  

components is in this subset of safety states. That 

meaning is very close to the definition of a two-state 

parallel system in a classical reliability [11], [14] 

analysis that is not failed if at least one of its 

components is not failed what can justify the safety 

structure scheme for a multistate parallel system 

presented in Figure 5.  

 

 
 

Figure 5. The scheme of a parallel system safety 

structure 
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The safety function of the multistate parallel system 

is given by the vector [6], [11], [14] 

 

   S(t , ) = [1,S(t,1),...,S(t,z)],                                  

 

with the coordinates   

 

   S(t,u) = 1  


n

i
i

utF
1

),( , ),,0 t  u = 1,2,...,z. 

 

Definition 6. A multistate system is called an “m out 

of n” system if its lifetime T(u) in the safety state 

subset },...,1,{ zuu   is given by    

 

   T(u) = ),(
)1(

uT
mn   m = 1,2,...,n, u = 1,2,...,z, 

 

where )(
)1(

uT
mn   is the m-th maximal order statistic 

in the sequence of the component lifetimes  

 

   1
T (u), 2

T (u),..., n
T (u), u = 1,2,...,z. 

 

The above definition means that the multistate „m 

out of n” system is in the safety state subset 

},...,1,{ zuu   if and only if at least m out of its n 

components are in this safety state subset and it is a 

multistate parallel system if m = 1 and it is a 

multistate series system if m = n. The numbers m and 

n are called the system structure shape parameters. 

The scheme of an “m out of n” multistate system 

safety structure, justified in an analogous way as in 

the case of a multistate series system and a multistate 

parallel system, is given in Figure 6, where ,
1

i ,
2

i …,

},...,2,1{ ni
n
  and ba

ii   for .ba   

 

 
 

Figure 6. The scheme of an “m out of n” system 

safety structure 

 

It can be simply shown that the safety function of the  

multistate “m out of n” system is given either by the 

vector [6], [11], [14]  

 

   ),( tS  = [1, )1,(tS ,..., ),( ztS ],                            

 

with the coordinates   

 

   





1

1...21

0,...,2,1

1
)],([)],([1),(

mnrrr
nrrr

ir

i
ir

i
utFutSutS ,        

   ),,0 t  u = 1,2,...,z,    

 

or by the vector [6], [11], [14] 

 

   ),( tS  = [1, )1,(tS ,..., ),( ztS ],                             

 

with the coordinates  

 

   





1

...21

0,...,2,1

1
)],([)],([),(

mnrrr
nrrr

ir

i
ir

i
utSutFutS ,             

   ),,0 t  ,mnm   u = 1,2,...,z.   

 

Definition 7. A multistate system is called a 

consecutive “m out of n: F” system if it is out of the 

safety state subset },...,1,{ zuu   if and only if at 

least its m neighbouring components out of n its 

components arranged in a sequence of ,
1

E  ,
2

E  ..., 

,
n

E  are out of this safety state subset. The numbers 

m and n are called the system structure shape 

parameters. 

After denoting by 

 

   
),( utS ))0(|)(( zSutSP  ),)(( tuTP     

   ),,0 t  u = 0,1,...,z, 

 

the probability that the consecutive “m out of n: F” 

system is in the safety state subset },...,1,{ zuu   at 

the moment t, ),,0 t  while it was in the safety 

state z at the moment t = 0 and by 

 

   
),( utF ),)(( tuTP 

 
),,0 t  u = 0,1,...,z,   

 

the distribution function of the lifetime )(uT  of this 

system in the safety state subset {u,u+1,...,z}, while it 

was in the safety state z at the moment t = 0, we 

conclude that the safety function of the consecutive 

“m out of n: F” system is the given by the vector  

 

   
),( tS = [1,

 
),1,(tS ),2,(tS  ...,

 
),( ztS ],            

 

with the coordinates given by the following recurrent 

formula [6], [11], [14] 

 

 

 

 

. 
. 
. 

. 
. 
. 

1i
E

  

ni
E

  

mi
E

  

2i
E
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   (t,u)S  

   








































,for                ),(

),(),(

),(),(

,for),(1

,for1

),(

1

1

1
1

1

1

mnutF

ututS

ututS

mnutF

mn

ut

n

inj
j

m

i
inin

nn

n

i
i

n

S

SS  

 

for ),,0 t  u = 1,2,...,z.                                  

 

Other basic multistate safety structures with 

components degrading in time are series-parallel, 

parallel-series, series-“m out of k”, “mi out of li”-

series, series-consecutive “m out of k: F” and 

consecutive “mi out of li: F”-series systems.  

To define them, we assume that: 

– k is the number of the system subsystems,  

– li, i = 1,2,...,k, are the numbers of the subsystem 

components, 

– Eij, i = 1,2,...,k, j = 1,2,...,li, k, l1, l2,..., k
l   N, are 

components of a system, 

– all components Eij have the same safety state set 

as before {0,1,...,z}, 

– Tij(u), i = 1,2,...,k, j = 1,2,...,li, k, l1, l2,..., k
l   N, 

are independent random variables representing 

the lifetimes of components Eij in the safety state 

subset },,...,1,{ zuu   while they were in the safety 

state z at the moment t = 0,  

– Eij(t) is a component Eij safety state at the moment 

t, ),,0 t  while they were in the safety state z 

at the moment t = 0, 

 

Definition 8  

A vector 

   Sij(t ) = [Sij(t,0),Sij(t,1),...,Sij(t,z)],                     (24) 

   ),,0 t  i = 1,2,...,k, j = 1,2,...,li, 

 

where     

   Sij(t,u) = P(Eij(t)  u  Eij(0) = z)                         (25) 

              = P(Tij(u) > t),   

   ),,0 t  u = 0,1,...,z, 

 

is the probability that the component Eij is in the 

safety state subset },...,1,{ zuu   at the moment t, 

),,0 t  while it was in the safety state z at the 

moment t = 0, is called the safety function of a 

multistate component Eij.  

The safety functions Sij(t,u), ),,0 t  u = 0,1,...,z, 

defined by (25) are called the coordinates of the 

component Eij, i = 1,2,...,k, j = 1,2,...,li, safety 

function Sij(t , ) given by (24). Thus, the relationship 

between the distribution function Fij(t,u) of the 

component Eij, i = 1,2,...,k, j = 1,2,...,li, lifetime Tij(u) 

in the safety state subset },...,1,{ zuu   and the 

coordinate Sij(t,u) of its safety function is given by  

 

   Fij(t,u) = P(Tij(u)  t) = 1 - P(Tij(u) > t)  

               = 1 - Sij(t,u), ),,0 t  u = 0,1,...,z. 

 

Definition 9 

A multistate system is called series-parallel if its 

lifetime T(u) in the state subset },...,1,{ zuu   is 

given by 

 

   T(u) = )}}({min{max
11

uT
ij

iljki 
, u = 1,2,...,z. 

 

The above definition means that the multistate series-

parallel system is composed of k multistate series 

subsystems and it is in the safety state subset 

},...,1,{ zuu   if and only if at least one out of its k 

series subsystems is in this safety state subset. In this 

definition, li, i = 1,2,...,k, denote the numbers of 

components in the series subsystems. The numbers k 

and l1, l2,..., lk are called the system structure shape 

parameters. Joining the justification for the safety 

structure schemes of the multistate series system and 

the multistate parallel system leads to the scheme of 

a multistate series-parallel system safety structure 

given in Figure 7.  

 

 
 

Figure 7. The scheme of a series-parallel system 

safety structure 

 

The safety function of the multistate series-parallel 

system is given by the vector [6], [11], [14]  

   ),( tS = [1,
 

),1,(tS ),2,(tS  ...,
 

),( ztS ],           (26) 

 

with the coordinates 

 

,



 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     . 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     . 

.     .     .     .     .     .     .     .     .     .     .     .     .     .     . 

.  .  .     E     1   1 
    E     2   1 

    E     
1 l   1 

.  .  .     E     21 
    E     2   2 

    E     
2 

l   2 
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 k1
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   ),( utS  =  


il

j
ij

k

i

utS
11

)],(1[1 , ),,0 t          (27) 

   u = 1,2,...,z,            

 

where k is the number of series subsystems linked in 

parallel and li are the numbers of components in the 

series subsystems.     

Proceed in analogous way as before we define other 

basic multistate safety structures [6]. All multistate 

safety structures are defined in [6]. 

 

Proposition 1 

If components of the multistate system have the 

exponential safety functions [6], [11], [14] 

   )],,(,),1,(,1[),( ztStStS
iii

  t  (,),                                                                                                             (2.54) 

 

where 
 

   1),( utS
i , for t < 0,  

   ])(exp[),( tuλutS
ii

  for t  0,       

   ,0)( uλ
i  i = 1,2,...,n, u = 1,2,…,z,   

in the case of the multistate series, parallel, “ m  out 

of n ”, consecutive “ m  out of n ” systems and 

respectively 

   )],,(,),1,(,1[),( ztStStS
ijijij

  t  (,),                                          (2.56) 

 

where 

 

   1),( utS
ij

 for t < 0,  

   ])(exp[),( tuλutS
ijij

  for t  0,                     

   ,0)( uij  i = 1,2,...,n, j = 1,2,...,li, u = 1,2,…,z,         

in the case of the series-parallel, parallel-series, 

series-“ m out of k ”, “mi out of li”-series, series-

consecutive “ m  out of k ” and consecutive “mi out 

of li”-series systems, then its safety function is given 

by the vector: 

 

i) for a series system  

 

   ),( tS = [1,
 

),1,(tS ),2,(tS  ...,
 

),( ztS ],           (28) 

 

where  

 

   1),( utS  for t < 0, ),( utS = ])(exp[
1




n

i
i

tuλ   (29) 

 

for t  0, ,,...,2,1 zu                                     

 

ii) for a parallel system  

 

   ),( tS = [1,
 

),1,(tS ),2,(tS  ...,
 

),( ztS ],                                            (2.60) 

 

where 

 

   S(t,u) = 1 for t < 0,  

   S(t,u) =  


n

i
i

tuλ
1

]])(exp[1[1 , for ,0t      

   ,,...,2,1 zu                                                       

 

iii) for a “m out of n” system 

 

   ),( tS = [1,
 

),1,(tS ),2,(tS  ...,
 

),( ztS ],     

 

where 

 

   1),( utS  for t < 0,  

   ),( utS  

     


 


1

1...21

0,...,2,1 1

1
]])(exp[1][)(exp[1

mnrrr
nrrr

n

i

ir

iii
tuλtuλr  

 

for ),,0 t  u = 1,2,...,z, or 

 

   ),( tS = [1,
 

),1,(tS ),2,(tS  ...,
 

),( ztS ],      

 

where 

 

   1),( utS  for t < 0, 

 

   ),( utS  


 

1

...21

0,...,2,1 1

])()1(exp[]])(exp[1[

mnrrr
nrrr

ii
ir

i

n

i

tuλrtuλ  

 

for ),,0 t ,mnm   u = 1,2,...,z,                    

 

iv) for a consecutive “m out of n: F” system  

 

   ),( tS = [1,
 

),1,(tS ),2,(tS  ...,
 

),( ztS ],   

 

where  

 

   1),( utS  for t < 0,  

   ),( utS ),( utnS  
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


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
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














n

inj
j

m

i
n-i-in

nn

n

i
i

mntu

uttu

uttu

mntu

mn

1

1

1
1

1

1

,for]])(exp[1[

),(])(exp[      

),(])(exp[

, for          ]])(exp[1[1

, for                                          1









S

S  

 

for ),,0 t  u = 1,2,...,z, 

 

v) for a series-parallel system 

 

   ),( tS = [1,
 

),1,(tS ),2,(tS  ...,
 

),( ztS ],           (30) 

 

where   

 

   1),( utS  for t < 0 

   ),( utS  =  
 

k

i

il

j
ij

tuλ
1 1

]])(exp[1[1  for ,0t  (31)  

   .,...,2,1 zu   

 

The safety functions for other multistate systems, 

such as parallel-series, series-“ m out of k ”, “mi out 

of li”-series, series-consecutive “ m  out of k ” and 

consecutive “mi out of li”-series are given in [6]. 

 

5. Application 

The considered oil piping transportation system is 

operating at one of the Baltic Oil Terminals that is 

designated for the reception from ships, the storage 

and sending by carriages or cars the oil products. It is 

also designated for receiving from carriages or cars, 

the storage and loading the tankers with oil products 

such like petrol and oil. The considered terminal is 

composed of three parts A, B and C, linked by the 

piping transportation system with the pier. The 

scheme of this terminal is presented in Figure 8 [5]. 

 

 
 

Figure 8. The scheme of the port oil piping 

transportation system 

 

Thus, the port oil pipeline transportation system 

consists of three subsystems:  

- the subsystem 
1

S  composed of two pipelines, each 

composed of 178 pipe segments and 2 valves,  

- the subsystem 
2

S  composed of two pipelines, each 

composed of 717 pipe segments and 2 valves, 

- the subsystem 
3

S  composed of three pipelines, 

each composed of 360 pipe segments and 2 valves.  

The subsystems ,
1

S  ,
2

S  ,
3

S  indicated in Figure 8 

are forming a general series port oil pipeline system 

safety structure presented in Figure 9. 

 

 

 
 

Figure 9. General scheme of the port oil pipeline 

system safety structure 

 

The system is a series system composed of two 

series-parallel subsystems ,
1

S  ,
2

S  each containing 

two pipelines and one series-“2 out of 3” subsystem 

,
3

S  containing 3 pipelines. 

The subsystems ,
1

S  2
S  and 3

S  are forming a 

general series port oil pipeline system safety 

structure presented in Figure 9.  

After considering the comments and opinions 

coming from experts, taking into account the 

effectiveness and safety aspects of the operation of 

the oil pipeline transportation system, we distinguish 

the following three safety states )2( z  of the system 

and its components:  

 a safety state 2 – piping operation is fully safe,  

 a safety state 1 – piping operation is less safe and 

more dangerous because of the possibility of 

environment pollution,  

 a safety state 0 – piping is destroyed. 

Moreover, by the expert opinions, we assume that 

there are possible the transitions between the 

components safety states only from better to worse 

ones and we assume that the system and its 

components critical safety state is .1r  

From the above, the subsystems ,
υ

S  ,3,2,1υ  are 

composed of three-state, i.e. z = 2, components ,)(υ

ij
E  

,3,2,1υ , having the safety functions 

 

   ),()( tS υ

ij
= [1, )1,()( tS υ

ij
, )2,()( tS υ

ij
], 

 

with the coordinates that by the assumption are 

exponential of the forms  

 

],)1(exp[)1,( )()( tλtS υ

ij

υ

ij
  ].)2(exp[)2,( )()( tλtS υ

ij

υ

ij
   

 

Thus, the system is a three-state series system 

composed of two three-state series-parallel 

  S1 S2 S3 
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subsystems 
1

S , 
2

S , each containing two pipelines 

and one three-state series-“2 out of 3” subsystem 
3

S .  

The subsystem S1 consists of k = 2 identical 

pipelines, each composed of 178 components ,)1(

ij
E

,2,1i ,178,...,2,1j  i.e. ,178
21
 ll  with the 

exponential safety functions identified on the basis of 

data coming from experts and given below.  

In each pipeline there are: 

- 176 pipe segments with the multistate safety 

functions co-ordinates  

 

   )1,()1( tS
ij

 = exp[0.0062t],  

   )2,()1( tS
ij

 = exp[0.0088t], ,2,1i ,176,...,2,1j  

 

- 2 valves with the multistate safety functions co-

ordinates  

 

   )1,()1( tS
ij

= exp[0.0167t],  

   )2,()1( tS
ij

 = exp[0.0182t], ,2,1i .178,177j  

The subsystem S1 is a three-state series-parallel 

system and according to (26)-(27) and (30)-(31) its 

three-state safety function is given by 

   ),()1( tS = [1, )1,()1( tS , )2,()1( tS ], t  0,          (32) 

where  

)1,()1( tS =  


178

1

)1(
2

1

)]1,(1[1
j

ij
i

tR  

   2]]]0167.020062.0176[exp[1[1 t  

   2]]1246.1exp[1[1 t  

   = ],2492.2exp[]1246.1exp[2 tt                          (33) 

   )2,()1( tS =  


178

1

)1(
2

1

)]2,(1[1
j

ij
i

tR  

   2]]]0182.020088.0176[exp[1[1 t  

   2]]5852.1exp[1[1 t  

   = ].1704.3exp[]5852.1exp[2 tt                          (34) 

 

The subsystem S2 consists of k = 2 identical 

pipelines, each composed of 719 components ,)2(

ij
E

,2,1i ,719,...,2,1j  i.e. ,719
21
 ll  with the 

exponential safety functions identified on the basis of 

data coming from experts and given below. In each 

pipeline there are: 

- 717 pipe segments with the multistate safety 

functions co-ordinates  

 

   )1,()2( tS
ij

= exp[0.0062t],  

   )2,()2( tS
ij

 = exp[0.0088t], ,2,1i ,717,...,2,1j  

 

- 2 valves with the multistate safety functions co-

ordinates  

 

   )1,()2( tS
ij

 = exp[0.0166t],  

   )2,()2( tS
ij

 = exp[0.0181t], ,2,1i .719,718j  

 

Thus, the subsystem S2 is a three-state series-parallel 

system and according to (26)-(27) and (30)-(31) its 

three-state safety function is given by 

   ),()2( tS = [1, )1,()2( tS , )2,()2( tS ], t  0,        (35) 

where 

   )1,()2( tS  =  


719

1

)2(
2

1

)]1,(1[1
j

ij
i

tR  

   2]]]0166.020062.0717[exp[1[1 t  

   2]]4786.4exp[1[1 t  

   = ]9572.8exp[]4786.4exp[2 tt  ,                       (36) 

   )2,()2( tS  =  


719

1

)2(
2

1

)]2,(1[1
j

ij
i

tR  

   2]]]0181.020088.0717[exp[1[1 t  

   2]]3458.6exp[1[1 t  

   = ]6916.12exp[]3458.6exp[2 tt  .                (37) 

 
The subsystem S3 consists of k = 3 pipelines, two 

pipelines of the first type and one pipeline of the 

second type, each composed of l = 362 components 

,)3(

ij
E ,3,2,1i ,362,...,2,1j  i.e. ,362

321
 lll  

with the exponential safety functions identified on 

the basis of data coming from experts and given 

below. In each pipeline of the first type there are: 

- 360 pipe segments with the multistate safety 

functions co-ordinates 

 

   )1,()3( tS
ij

= exp[0.0059t],  

   )2,()3( tS
ij

 = exp[0.0074t], ,2,1i ,360,...,2,1j  

 

- 2 valves with the multistate safety functions co-

ordinates  

 

   )1,()3( tS
ij

 = exp[0.0166t],  

   )2,()3( tS
ij

 = exp[0.0181t], ,2,1i .362,361j  

 

In the pipeline of the second type there are:  

- 360 pipe segments with the multistate safety 

functions co-ordinates   

 

   )1,()3( tS
ij

 = exp[0.0071t],  
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   )2,()3( tS
ij

 = exp[0.0079t], 3i ,360,...,2,1j  

 

- 2 valves with the multistate safety functions co-

ordinates   

 

   )1,()3( tS
ij

 = exp[0.0166t],  

   )2,()3( tS
ij

 = exp[0.0181t], ,3i .362,361j  

 

The subsystem S3 is a three-state series-”2 out of 3” 

system and according to (2.40)-(2.41) and (2.72)-

(2.73) in [6] its multistate safety function is given by 

 

   ),()3( tS = [1, )1,()3( tS , )2,()3( tS ], t  0,         (38) 

where 

 

   )1,()3( tS   

    








1

1321

03,2,1

1
362

1

)3(
362

1

)3(
3

1

])1,(1[])1,([1

rrr
rrr

ir

j
ij

ir

j
ij

i

tRtR  

   = 1 – 2]]]0166.020059.0360[exp[1[ t  

   1]]]0166.020071.0360[exp[1[ t  

   – 2 ]]0166.020059.0360[1exp[ t    

   1]]]0166.020059.0360[exp[1[ t  

   1]]]0166.020071.0360[exp[1[ t  

   – ]]0166.020071.0360[exp[ t  

   2]]]0166.020059.0360[exp[1[ t  

   ]7464.4exp[2]3144.4exp[ tt     

   ]9036.6exp[2 t  ,                                          (39) 

 

   )2,()3( tS   

    








1

1321

03,2,1

1
362

1

)3(
362

1

)3(
3

1

])2,(1[])2,([1

rrr
rrr

ir

j
ij

ir

j
ij

i

tStS  

   = 1 – 2]]]0181.020074.0360[exp[1[ t  

   1]]]0181.020079.0360[exp[1[ t  

   – 2 ]]0181.020074.0360[1exp[ t     

    1]]]0181.020074.0360[exp[1[ t  

   1]]]0181.020079.0360[exp[1[ t  

– ]]0181.020079.0360[exp[ t  
   2]]]0181.020074.0360[exp[1[ t  

   ]5804.5exp[2]4004.5exp[ tt     

   ]2806.8exp[2 t .                                             (40) 

 

Considering that the pipeline system is a three-state 

series system, after applying (22)(23), its safety 

function is given by  

   ),( tS )1,(,1[ tS )],2,(tS  
t  0,                         (41) 

where by (33)-(34), (36)-(37) and (39)-(40) we have  

 

   )1,(tS )1,(
3

tS = )1,()1( tS )1,()2( tS )1,()3( tS   

   = ]9176.9exp[4 t ]3496.10exp[8 t    

   ]5078.12exp[8 t ]396.14exp[2 t    

   ]8282.14exp[4 t ]9864.16exp[4 t   

   ]0422.11exp[2 t ]4742,11exp[4 t     

   ]6324.13exp[4 t  ]5208.15exp[ t  

   ]9528.15exp[2 t ]111.18exp[2 t ,             (42) 

 

   )2,(tS )2,(
3

tS = )2,()1( tS )2,()2( tS )2,()3( tS  

   = ]3314.13exp[4 t ]5114.13exp[8 t    

   ]2116.16exp[8 t ]6772.19exp[2 t  

   ]8572.19exp[4 t ]5574.22exp[4 t  

   ]9166.14exp[2 t ]0966,15exp[4 t    

   ]7968.17exp[4 t ]2624.21exp[ t  

   ]4424.21exp[2 t ]1426.24exp[2 t .           (43) 

 

The graph of the three-state piping system safety 

function is shown in Figure 10. 

The expected values and standard deviations of the 

pipeline system lifetimes in the safety state subsets 

},2,1{ },2{ calculated from the results given by (42)-

(43), according to (15)-(17), respectively are:  

 

   )1(μ  0.207, )2(μ  0.156 year,                     (44) 

   )1(σ   0.137, )2(σ   0.104 year,    

 
and further, using (44), by (19), it follows that the 

mean values of the piping lifetimes in the particular 

safety states are:  

   )1(μ  0.051, )2(μ  0.156 year.            

   

 

 

 

 

 

 

 

 

Figure 10. The graph of the port oil piping 

transportation system safety function ),( tS  
coordinates 

 

As the critical safety state is r =1, then the pipeline 

system risk function, according to (20), is given by  

 

   r(t) = )1,(1 tS  

 

)2,(tS

 

)1,(tS  

)0,(tS
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   = 1–[ ]9176.9exp[4 t ]3496.10exp[8 t   

   ]5078.12exp[8 t ]396.14exp[2 t  

   ]8282.14exp[4 t ]9864.16exp[4 t   

   ]0422.11exp[2 t ]4742,11exp[4 t    

   ]6324.13exp[4 t  ]5208.15exp[ t  

   ]9528.15exp[2 t ]]111.18exp[2 t  for t  0. 

 

Hence, and from (21), the moment when the piping 

system risk function exceeds a permitted level, for 

instance  = 0.05, is  

 

    = r1()  0.04.                   

 

The graph of the risk function )(tr  of the three-state 

pipeline system is shown in Figure 11. 

 

5. Conclusion 

In the paper there is presented the safety model of 

ageing systems. Presented model is the basis for 

further considerations in particular tasks of the EU-

CIRCLE project. Next this model together with the 

models of the system operation process presented in 

[5] will be used to construct the integrated general 

safety probabilistic model of the critical 

infrastructure related to its operation process. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. The graph of the risk function )(tr  of the 

port oil piping transportation system  

 

The models applied here, in their particular cases, for 

the safety analysis and prediction of the port oil 

piping transportation system operating in constant 

operation conditions will also be applied in tasks of 

the EU-CIRCLE project to safety analysis and 

prediction of these systems operating at the variable 

operation conditions. 
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