PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptacyjna absorpcja obciążeń od ekstremalnych podmuchów wiatru w turbinach wiatrowych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Extreme gust load alleviation in wind turbines
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono koncepcję łagodzenia skutków działania ekstremalnych podmuchów wiatru na łopaty turbin wiatrowych. Zaproponowane zostało uzupełnienie istniejących, aktywnych mechanizmów nastawiania kąta łopaty o dodatkowy system, który umożliwia redukcję naprężeń w nasadzie łopaty w trakcie narastania ekstremalnych podmuchów wiatru. Zaprezentowane rozwiązanie półaktywne nie wymaga wprowadzania dodatkowych źródeł ani akumulatorów energii, gdyż wykorzystuje ono energię obecną w strumieniu powietrza do tego, aby szybko obrócić łopatę w kierunku położenia "w chorągiewkę" i w ten sposób złagodzić narastające w trakcie podmuchu obciążenia aerodynamiczne. Opracowany został własny model numeryczny w oparciu o metodę modalną oraz teorię pasową strumienia śmigłowego. Wykonano szereg symulacji pięciomegawatowej turbiny wiatrowej, w tym obliczenia obejmujące pracę w stanie ustalonym, odpowiedź na ekstremalny podmuch wiatru, a także proces hamowania awaryjnego. Wykazano, iż możliwe jest szybkie zredukowanie obciążeń aerodynamicznych działających na łopaty turbiny wiatrowej przez wysprzęglenie skrętnego połączenia łopaty z piastą, i następnie kontrolę procesu obrotu łopaty wokół swojej osi w trakcie narastania podmuchu wiatru. Średnia prędkość obrotu łopaty może być znacząco wyższa niż maksymalne prędkości uzyskiwane przez istniejące mechanizmy nastawiania kąta łopaty. Celem drugiej części pracy było wykazanie, na drodze prostego doświadczenia w tunelu aerodynamicznym, że łopaty wirnika wyposażone w odpowiedni mechanizm wraz z układem sterowania, mogą obrócić się w kierunku ustawienia "w chorągiewkę” oraz, że obrotowi takiemu towarzyszy spadek obciążeń aerodynamicznych w nasadzie łopaty. W oparciu o hamulec magnetoreologiczny zaprojektowane zostało połączenie łopaty i piasty o regulowanej sztywności skrętnej. Testy przeprowadzono na modelowej turbinie wiatrowej o średnicy dwóch metrów. Ponadto wykonano szereg symulacji numerycznych w celu porównania wyników testów z odpowiedzią modelu numerycznego i uzyskano zadowalającą zgodność wyników.
EN
A new concept of extreme operating gust loads alleviation in wind turbines has been presented. A new system has been proposed, as an extension of existing, active pitch control mechanisms, which allows for reduction of stresses in a blade root, in response to a rising extreme gust. No energy sources or accumulators are required in the proposed semi-active solution as it utilizes the energy of the wind stream in order to turn the blade to feather and thus mitigate the aerodynamic loads induced during the rise of an extreme gust. The aim for the carried out numerical simulations was to demonstrate the effectiveness of the solution at the theoretical, academic level. A numerical model has been elaborated based on the Modal method and Blade Element Momentum (BEM) theory. A number of numerical simulations has been carried out for a five megawatt turbine, including steady state analysis, extreme operating gust response and emergency braking. Numerical results show that it is feasible to rapidly reduce aerodynamic loads acting on a wind turbine blades by means of unclutching the torsional connection between the blade and the hub and controlling the rotation process in response to a sudden gust. The average rotational velocity of the unclutched blade may significantly exceed maximum velocities obtained by existing pitch control mechanisms. The goal of a simple experiment in a wind tunnel described in the second part of the work was to prove that the wind turbine blades equipped with the adaptive clutch together with control system may be turned to feather under aerodynamic torsional moment and this is accompanied by the decrease in remaining reaction moments in the blade root. The core of the adaptive device was a magnetoreological clutch capable to adjust the torsional stiffness of the blade root. The tests were carried out on a two-meter diameter model wind turbine with tensometers in the blade roots allowing for monitoring of the blade root reaction forces.
Słowa kluczowe
Rocznik
Tom
Strony
1--158
Opis fizyczny
Bibliogr. 71 poz., rys.
Twórcy
autor
  • Instytut Podstawowych Problemów Techniki, Polskiej Akademii Nauk
Bibliografia
  • 1. G. A. M. van Kuik. The Lanchester-Betz-Joukowsky limit. Wind Energy, 10:289-291, 2007.
  • 2. P. S .Veers et al. Trends in the design, manufacturing and evaluation of wind turbine blades. Wind Energy, 6:245-259, 2003.
  • 3. G. Sieros, P. Chaviaropoulos, JD Sørensen, BH Bulder, and P. Jamieson. Upscaling wind turbines: Theoretical and practical aspects and their impact on the cost of energy. Wind Energy, 15(1):3 17. 2012.
  • 4. J. Holnicki-Szulc, C. Graczykowski, G. Mikułowski, A. Mróz, and P. Pawłowski. Smart technologies for adaptive impact absorption. Solid State Phenomena, 154:187-194, 2009.
  • 5. M. Wiklo and J. Holnicki-Szulc. Optimal design of adaptive structures part ii. adaptation to impact loads. Structural and Multidisciplinary Optimization, 37(4):351-366, 2009.
  • 6. G. Mikułowski and J. Holnicki-Szulc. Fast controller and control algorithms for mr based adaptive impact absorbers-force based control. Machine Dynamics Problems, 30(2):113-122, 2006.
  • 7. P. H. Jensen N. Fichaux, J. Beurskens and J. Wilkes. Upwind, design limits and solutions for very large wind turbines. Technical report, Risoe, 03 2011.
  • 8. M. O. L. Hansen, J.N. Sorensen, and S. Voutsinas. State of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 42:285-330, 2006.
  • 9. IEC 61400-1. IEC. Wind turbines - Part 1: Design Requirements, third edition, 2005.
  • 10. T. K. Barlas and G. A. M Van Kuik. Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences, 46(1):1-27, 2010.
  • 11. D. W. Lobitz and P.S. Veers. Load mitigation with bending/twist-coupled blades on rotors using modern control strategies. Wind Energy, 6(2): 105-117, 2003.
  • 12. T. Burton, D. Sharpe, et al. Wind energy handbook. Wiley, 2001.
  • 13. S. Scott Collis, R.D. Joslin, A. Seifert, and V. Theofilis. Issues in active flow control: theory, control, simulation, and experiment. Progress in Aerospace Sciences, 40(4-5) :237-289, 2004.
  • 14. T. K. Barlas and G.A.M. Kuik. State of the art and prospectives of smart rotor control for wind turbines. In Journal of Physics: Conference Series, volume 75, page 012080, 2007.
  • 15. V. Giurgiutiu. Review of smart-materials actuation solutions for aeroelastic and vibration control. Journal of intelligent material systems and structures, 11(7):525 5ii. 2000.
  • 16. E. A. Bossanyi. Wind turbine control for load reduction. Wind Energy, 6:229-244, 2003.
  • 17. E. A. Bossanyi. Individual blade pitch control for load reduction. Wind Energy, 6:119-128, 2003.
  • 18. E. A. Bossanyi. Further load reductions with individual pitch control. Wind Energy, 8:481-485, 2005.
  • 19. T. G. van Engelen and E.L. van der Hooft. Individual pitch control inventory. Technical Report ECN-C-03-138, ECN, 2005.
  • 20. T. J. Larsen, H.A. Madsen, and K. Thomsen. Active load reduction using individual pitch, based on local blade flow measurements. Wind Energy, 8(l):67-80, 2005.
  • 21. J. W. Van Wingerden, AW Hulskamp, T. Barlas, B. Marrant, GAM Van Kuik, D.P. Molenaar, and M. Verhaegen. On the proof of concept of a 'smart'wind turbine rotor blade for load alleviation. Wind Energy, ll(3):265-280, 2008.
  • 22. T. Buhl, M. Gaunaa, and C. Bak. Potential load reduction using airfoils with variable trailing edge geometry. Journal of Solar Energy Engineering, 127:503-516, 2005.
  • 23. P. B. Andersen, M. Gaunaa, C. Bak, and T. Buhl. Load alleviation on wind turbine blades using variable airfoil geometry. In Proceedings of the EWEC 2006, Athens, Greece, 2006.
  • 24. M. Gaunaa. Unsteady 2d potential-flow forces on a thin variable geometry airfoil undergoing arbitrary motion. Risø Report R-14-78, Risø National Laboratory, 2006.
  • 25. C. P. Dam, R. Chow, JR Zayas, and DE Berg. Computational investigations of small deploying tabs and flaps for aerodynamic load control. In Journal of Physics: Conference Series, volume 75, page 012027, 2007.
  • 26. D. E. Berg, J.R. Zayas, D.W. Lobitz, CP van Dam, R. Chow, and J.P. Baker. Active aerodynamic load control of wind turbine blades. In Proc. of the 5th Joint ASME/JSME Fluids Engineering Conference, 2007.
  • 27. C. Tongchitpakdee, S. Benjanirat, L.N. Sankar, et al. Numerical studies of the effects of active and passive circulation enhancement concepts on wind turbine performance. Journal of Solar Energy Engineering, 128:432, 2006.
  • 28. T. C. Corke, M.L. Post, and D.M. Orlov. Sdbd plasma enhanced aerodynamics: concepts, optimization and applications. Progress in Aerospace Sciences, 43(7-8):193-217, 2007.
  • 29. Enercon. Enercon wind energy converters technology and service. http://www.enercon.de/en-en/754.htm, 07 2010.
  • 30. C. Graczykowski and J. Holnicki-Szulc. Protecting offshore wind turbines against ship impacts by means of adaptive inflatable structures. Shock and Vibration, 10(i):335 353. 2009.
  • 31. A. Mróz, J. Holnicki-Szulc, and T. Kama. Mitigation of ice loading on off¬shore wind turbines: Feasibility study of a semi-active solution. Computers and structures, 86(3):217-226, 2008.
  • 32. J. Jonkmann, S. Butterfield, and al. Definition of a 5-mw reference wind turbine for offshore system development. NREL Technical Report, pages NREL/TP-500-38060, 2009.
  • 33. T. Chaviaropoulos. Up-scaling, prezentacja na stronie www.upwind.eu, 03 2010.
  • 34. M. Wachter, A. Rettenmeier, M.Kuhn, and J. Peinke. Wind velocity measurements using a pulsed lidar system: first results. IOP Conf. Series: Earth and Environmental Science, 1:012066, 2008.
  • 35. I. van der Hoven. Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. Journal of Meteorology, 14:160-164, 1957.
  • 36. J. Král. Ten-minute wind speeds and gusts in the Czech republic. Journal of Wind Engineering and Industrial Aerodynamics, 95:1216-1228, 2007.
  • 37. E. Cheng and C. Yeung. Generalized extreme gust wind speeds di-stributions. Journal of Wind Engineering and Industrial Aerodynamics, 90:1657-1669, 2002.
  • 38. A. Kareem and Y. Zhou. Gust loading factor—past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 91:1301-1328, 2003.
  • 39. M. Courtney, R. Wagner, and P. Lindelów. Testing and comparison of lidars for profile and turbulence measurements in wind energy. In IOP Conference Series: Earth and Environmental Science, volume 1, page 012021. IOP Publishing, 2008.
  • 40. J. Gottschall, MS Courtney, R. Wagner, HE J0rgensen, and I. Antoniou. Lidar profilers in the context of wind energy-a verification procedure for traceable measurements. Wind Energy, 15(1):147-159, 2012.
  • 41. DTU. Database of wind characteristics located at dtu, denmark. http://winddata.com/, Technical University of Denmark.
  • 42. Po-Wen Cheng and W. Bierbooms. Distribution of extreme gust loads of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 89:309-324, 2001.
  • 43. W. Bierbooms and Po-Wen Cheng. Stochastic gust model for design cal-culations of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 90:1237-1251, 2002.
  • 44. M. H. Hansen and B.S. Kallesøe. Servo-elastic dynamics of a hydraulic actuator pitching a blade with large deflections. In Journal of Physics: Conference Series, volume 75, page 012077, 2007.
  • 45. E. A. Bossanyi. The design of closed loop controllers for wind turbines. Wind Energy, 3:149-163, 2000.
  • 46. A. Mróz and J. Grzędziński. Sposób zabezpieczania mechanizmów turbiny wiatrowej przed skutkami nagłych, nadmiernych obciążeń i układ do zabezpieczania łopat turbiny wiatrowej. Urząd Patentowy Rzeczpospolitej Polskiej, 03 2012.
  • 47. E. A. Bossanyi. Gh bladed theory manual. Software manual, Garrad Hassan and Partners Ltd, 2007.
  • 48. P. Passon and M. Kuhn. Oc3 - benchmark exercise of aero elastic offshore wind turbine codes. NREL Conference Paper, 2007. NREL/CP-500-41930.
  • 49. Professional Services Group. Adams/wt 2.0 user's guide. Technical report, NREL - National Renewable Energy Laboratory, 1998.
  • 50. J. Grzędziński and A. Mróz. Gust load reduction concept in wind turbines. Wind Energy, 13:267-274, 2010.
  • 51. H. Glauert. Aerodynamic theory. Airplane Propellers, 4:169-360, 1935.
  • 52. W. J . Prosnak. Mechanika płynów. Państwowe Wydawnictwo Naukowe, 1970.
  • 53. D. J. Sharpe. A general momentum theory applied to an energy-extracting actuator disc. Wind Energy, 7:177-188, 2004.
  • 54. W. H. Press, S.A. Teukolsky, et al. Numerical recipes in Fortran. The art of scientific computing. Cambridge University Press, second edition, 1992.
  • 55. J. L. Humar. Dynamics of Structures. A.A. Balkema Publishers, 2002.
  • 56. W. Kołodziej. Wybrane rozdziały analizy matematycznej. PWN, 1970.
  • 57. W. T. Thomson. Vibration theory and applications. Prentice-Hall, third edition, 1965.
  • 58. C. Lindenburg. Aeroelastic modeling of the lmh64-5 blade. DOWEC Public Report, 2002.
  • 59. A. W. Hulskamp, J.W. van Wingerden, et al. Design of a scaled wind turbine with a smart rotor for dynamic load control experiments. Wind Energy, 14(3):339-354, 2011.
  • 60. J. W. van Wingerden, A.W. Hulskamp, T.Barlas, et al. Two-degree-of-freedom active vibration control of a prototyped "smart" rotor. Control Systems Technology, IEEE Transactions on, 19(2):284-296, 2011.
  • 61. W. A. Timmer and R. van Rooij. Summary of the delft university wind turbine dedicated airfoils. In 41st Aerospace Sciences Meeting, 2003. Paper No. AIAA-2003-0352.
  • 62. F. Bertagnolio, N. Sørensen, J. Johansen, et al. Wind turbine airfoil cata-logue. Technical Report Risø-R-128O, Risø National Laboratory, 08 2001.
  • 63. W. A. Timmer. An overview of naca 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades. In 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 01 2009.
  • 64. J. Grzędziński and A. Mróz. Gust load reduction concept in wind turbines. In 4th ECCOMAS Thematic Conference on Smart Structures and Materials, Porto, Portugal, 07 2009. paper ID 069.
  • 65. C. Lindenburg. Investigation into rotor blade aerodynamics. Project Report ECN-C-03-025, Energy Research Centre of the Netherlands ECN, July 2003.
  • 66. J. Grzędziński and A. Mróz. Gust load reduction concept in wind turbines - experimental verification in wind tunnel. In 5th ECCOMAS Thematic Conference on Smart Structures and Materials, pages 493-503, Saarbrucken, Germany, 07 2011.
  • 67. F. Meng. Aero-elastic Stability Analysis for Large-Scale Wind Turbines. PhD thesis, Delf University of Technology, 01 2011.
  • 68. M. Drela. Xfoil: An analysis and design system for low reynolds number airfoils. In Conference on Low Reynolds Number Aerodynamics, Notre Dame, Indiana, USA, 06 1989.
  • 69. C. Hansen. NWTC Design Codes (AirfoilPrep by Dr. Craig Hansen). http://wind.nrel.gov/designcodes/preprocessors/airfoilprep/, 12 2005. ar-kusz kalkulacyjny.
  • 70. J. Grzędziński and Mróz A. Feasibility study of a semi-active gust load reduction concept in wind turbines. In 37th Solid Mechanics Conference. Book of Abstracts, pages 266-267. Instytut Podstawowych Problemów Techniki PAN, 2010.
  • 71. M. O. L. Hansen. Aerodynamics of wind turbines. Earthscan, second edition, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7847a4f4-2e90-43b5-8015-904a60f0666a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.