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Abstract  

The paper presents simulation of the cutting force components for ma-

chining of magnesium alloy AZ91HP. The simulation employs the Black 

Box model. The closest match to (input and output) data obtained from the 

machining process was determined. The simulation was performed with 

the use of the Statistica programme with the application of neural 

networks: RBF (Radial Basis Function) and MLP (Multi-Layered 

Perceptron).  

 

 

1. INTRODUCTION 

 

Manufacturing advanced machine and equipment elements is inextricably 

related to the application of new generation structural materials. Application of 

magnesium alloys enables reduction of weight of manufactured elements and can 

facilitate decreasing manufacturing and maintenance costs (Pekguleryuz et al., 2013). 
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Production of different components involves effective removal of machining 

allowances, often through the process of milling. “Functional” machinability 

parameters include, inter alia, forces occurring during machining. The forces  

in question can contribute to deformation of a workpiece during machining.  

The increase of these forces can lead to the reduction of undeformed chip 

thickness. When the latter decreases, the cutting force increases. The rise in the 

shear energy per unit of volume translates to rising volume of subtracted metal 

and of the cutting force (Fang et al., 2005). Adhesion and build-up can also have 

a considerable impact on fluctuation of the cutting force components as well as 

result in the reduction of the surface quality and shape and dimensional accuracy 

(Oczoś, 2000). The demand for force in machining various materials, including 

magnesium alloys, is the subject of numerous studies. Compared to other 

materials, magnesium alloy treatment can be performed quickly and effectively, 

which enables machining at a large depth of cut and considerable feed (Zagórski 

& Kuczmaszewski, 2013; Fu et al., 2015). 

Cutting speed is what directly affects the effectiveness of the milling 

processes. The division that is frequently adopted includes machining performed 

at conventional parameters and increased cutting parameters, which is the area 

of various HSM methods. It is possible to define the “transition” point into HSM 

parameters as ∂F/∂vc<0 for HSM and ∂F/∂vc>0 in the case of conventional 

machining. It is broadly accepted that what distinguishes HSM from 

conventional machining is that in HSM the increase in the cutting speed vcb 

results in the decrease in the cutting forces. On the other hand, HSM machining 

is often defined as a high-performance cutting method which facilitates 

obtaining high quality of machined surface. The use of HSM helps to eliminate 

finishing operations which have been traditionally realised through grinding 

(Adamski, 2010). 

In AZ91HP alloy milling with PCD cutter and in the presence of cutting fluid 

cutting forces assume low values and grow linearly with the increase of feed. 

Lower cutting forces can translate into smaller tendency for tools to overheat 

(smaller coefficient of friction at a tool-workpiece interface). What can be 

observed along with lower cutting forces, especially as far as small cross-section 

of a machined layer is concerned, is a significantly lower temperature in the 

cutting area (Oczoś, 2000, 2009). 

In feed per tooth fz (in machining with Kordell geometry tools), the Fx and Fy 

components and their amplitudes rise with the increase of feed. In the case of 

cutting with cutters of traditional tool geometry, a more significant influence  

on cutting forces and their amplitudes is observed when changing the feed per 

tooth fz rather than cutting speed vc; the highest values of the cutting force 

components were obtained for the PCD cutting edge tool and AZ91HP alloy. 

Furthermore, it ought to be remarked that the cutting force components decrease 

with the increase of cutting speed to vc=1200m/min in traditional tool geometry 

(Zagórski & Kuczmaszewski, 2013). Another relevant factor is tool geometry 
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and its impact on the cutting force components and their amplitudes. Research 

studies in the field generally focus on the changes of specific technological 

milling parameters (vc, fz, ap) with the application of carbide cutters of variable 

tooth geometry (γ=5º and γ=30º). Lower values of cutting force components  

and their amplitudes indicating a greater stability of the process were observed 

for the tool γ=30º. Increasing the depth of cut triggers a proportional increase  

in the cutting force components and their amplitudes. A change in the feed per 

tooth (in the range of fz=0.05÷0.15mm/tooth) provoked the rise of the cutting 

force components and subsequently their stabilisation (for fz=0.15÷0.3mm/tooth) 

(Gziut et al., 2014). Another factor of high importance is the impact of cutting 

tool coating (such as the TiB2 and TiAlCN type) on cutting forces in milling 

with carbide tools. The lowest values of cutting force components (Fx, Fy)  

in milling Al6082 alloy were obtained for a tool with a TiB2 coating. During the 

vc change, the characteristic point of „transition” to the range of HSC (where 

vcgr=450÷600m/min) was observed (Kuczmaszewski & Pieśko, 2013).  

In addition, cutting force component amplitudes, which are a significant indi-

cator of the cutting process dynamics, assume the highest values for indexable 

tools (which should be taken into account when selecting a tool for a particular 

application) (Kuczmaszewski & Pieśko, 2014).  

Furthermore, excessive cutting force value can have a negative influence on 

the quality of machined surface. Increasing feed results in higher vibrations 

generated in the milling machine-milling cutter-workpiece-fixture system, which 

is triggered by excessive cutting force (Kim & Lee, 2010). Nowadays machining 

processes are increasingly frequently modelled with both mathematical 

modelling methods (Danis et al., 2016) and advanced artificial intelligence 

systems (Cus et al., 2007). 

Despite multiple advantages, subtractive manufacturing of magnesium alloys 

involves multiple risks. Magnesium dust emerging during machining has a nega-

tive impact on both the staff operating machine tools and the machine tool itself. 

Moreover, magnesium is susceptible to ignition, which can occur as a result  

of a rapid temperature increase. Another problematic matter can be formation  

of build-up at the tool edge or rake face, which results from intensification  

of adhesion (Oczoś 2000, 2009). Thus, the analysis of the actual cutting force 

values and computer simulation can have a beneficial influence on the stability 

and effectiveness of Mg alloy machining and safety prediction. Anticipating 

cutting force component values seems considerably significant from  

the viewpoint of magnesium alloy machining due to deformations of thin-walled 

elements. The model enables selecting the technological parameters in a way 

that it is possible to obtain required force component values without producing 

machining errors. 
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2.  RESEARCH SUBJECT 

 

The simulation of cutting force components was performed for the AZ91HP 

magnesium alloy milling. For that purpose, experimental analysis was carried 

out. The applied tool was a double-bit carbide fly cutter with TiAlN coating  

and with a plain parallel shank, belonging to the group of cutters intended for 

machining Al and Mg alloys. The dimensions of the milling cutter were the 

following 16x25x100 mm W-Z2, λs=30°. The scope of the technological 

parameters comprised vc=400-1200 m/min, fz=0.05-0.3 mm/tooth. Parameters 

such as milling depth ap=6 mm and milling width ae=14 mm were constant  

in the conducted tests. Machining was performed on a vertical machining centre 

Avia VMC800HS with the control system Heidenhain iTNC 530 offering 

maximum spindle rotation speed of n=24000 rpm and minimum feed  

of 40 m/min. In order to measure the cutting forces, piezoelectric dynamometer 

Kistler 9257B was applied together with the amplifier 5017B. The dynamometer 

allowed measuring the forces within the range of –5 kN to +5kN. The sampling 

rate was 5kHz. 

In milling, particularly at increased cutting speeds, the importance of dyna-

mic cutting force components rises. What should be done in order to determine 

their value is their identification. The difficulty that arises here is the fact that the 

model of the phenomena emerging in the cutting area during milling is highly 

complex and non-linear. The outcome of force interactions is the mutual 

dislocation of the object and the tool in their area of cut. Non-stationarity poses 

yet another obstacle which results from the character of cutter feed movement. 

The measurement of the cutting force is impeded as it requires a dynamometer  

to be installed in the machine tool. Furthermore, installing any dynamometer 

impacts the dynamic properties of the milling machine-milling cutter-workpiece-

fixture system. The adoption of such a solution is currently difficult in industrial 

conditions. There is, however, a remarkable correlation between the technolo-

gical machining parameters such as feed, cutting speed, depth and width of cut. 

Consequently, a question whether it is possible to predict the cutting force – 

its components should be asked. The answer to this question can be obtained  

by approaching the milling process as a control object. Therefore, the analysis  

of such an object should be carried out. Also, controllable inputs and outputs  

of a model occurring as a result of the identification should be determined.  

This can be obtained through the application of the Black Box model, i.e. 

specifying the closest match between certain (input and output) data produced by 

the system. This kind of a solution can be applied when it is difficult to define  

a mathematical equation describing the process due to its complex character 

(Awrejcewicz, 2007; Kuc, 2014). 
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fz  - feed per tooth

vc - cutting speed

„black box”

Fx - cutting force component 
along the X axis

Fy - cutting force component 
along the Y axis

Fz -  cutting force component 
along the Z axis

 

Fig. 1. The model of the milling process (own study) 

 

Controllable parameters that a technologist has at his disposal are cutting 

speed vc, feed per tooth fz, cutting depth ap, cutting width ae, tool geometry 

(including the rake face or the inclination angle of a helix). When machining 

process is considered as a control object, output rates are the following cutting 

force components: Fx – cutting force component along the X axis (also described 

as feed component Ff), Fy – cutting force component along the Y axis  

(the normal component to the feed force Ffn) and Fz – cutting force component 

along the Z axis (reactive component Fp). In tests, cutting speed vc and feed per 

tooth fz were variable input parameters, the remaining ones were constant.  

The model of the process is presented in Fig. 1. Assuming that the process  

of machining of a specific part is repeatable, force input and cutting conditions 

in selected points of the tool path can be similarly considered repeatable. Several 

requirements should also be set regarding the accuracy of this assumption,  

i.e. cutting should be performed with a sharp tool and at constant cutting 

parameters for consecutive machining cycles.  

 

 

3. NEURAL NETWORK MODELLING 
 

The aim of the modelling is to predict the course of non-linear technological 

processes with the application of trained neural networks. Its analysis can 

contribute to the creation of a system which could support decision-making 

processes in an enterprise (for instance through optimization of milling process 

focusing on the selection of suitable technological parameters of machining).  

For the purpose of cutting force components simulation, artificial neural 

network was used. The applied software was Statistica. During testing, two 

networks scrutinised: RBF (Radial Basis Function) and MLP (Multi-Layered 

Perceptron). Each component of the cutting force was modelled separately. 

Their values were calculated as the average of the maximum values from the 10 

ranges separated from the stable machining area. It constituted the output value 

for individual models.  

 



 

54 

The networks were built with one hidden layer. The input layer consisted  

of two neurons whereas the output layer – one. Both the number of the training 

epochs (100) and the number of neurons in the hidden layer (110) were 

selected experimentally. In order to create a simulation of all three cutting force 

components, 3 models of artificial neural networks were built. The input 

modelling parameters were cutting speed vc and feed per tooth fz. The outline  

of such a network for the cutting force component Fx is presented in Fig. 2.  

The outlines of the remaining components were analogical, relevant cutting 

force components were obtained as model outputs.  

 

vc 

fz 

Fx 
O
O
O

 
Fig. 2. Artificial neural network outline of the cutting force component  

along the X axis – Fx (own study) 

 

The training of the MLP network was performed with the use of the BFGS 

(Broyden-Fletcher-Goldfarb-Shanno) method. It produced the best results in the 

reduction of functions to the required level at the shortest possible time. During 

the simulation, the following application functions were applied: linear, 

exponential, logistic and tanh. RBF network was trained with the RBFT method. 

The activation function for hidden neurons was Gaussian distribution, for input 

neurons – linear function.  

The modelling was conducted focusing on 17 sets of machining parameters, 

14 of which were used for training. The training group comprised 80% of the 

measurement results, 20% was validational. The remaining parameter sets were 

applied for the verification of the simulation accuracy. Due to the small amount 

of data sets, the test group was not created (Szaleniec, 2008).  

From among obtained cutting force components simulations, on the basis of 

the smallest training error and the highest quality of training, the most effective 

MLP network models were selected. Afterwards, they were compared to the 

simulation based on the RBF network. The training error was determined by the 

method of least squares.  
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The parameters of the best MLP and RBF networks for specific cutting force 

components Fx, Fy and Fz are presented in Table 1. On the basis of the analysis 

of the obtained network models, it can be stated that in the case of all cutting 

force components the best results were achieved for the MLP networks (Fx – 

MLP 2-4-1 having four neurons, Fy – MLP 2-9-1 having nine neurons, Fz – MLP 

2-8-1 having eight neurons). For the modelled components, the quality of the 

MLP and RBF networks was comparable, however for the MLP network much 

smaller training errors were obtained. It is therefore suggested that the 

recommended network should be MLP. 

 
Tab.1. The parameters of the best MLP and RBF networks for specific cutting force 

components (own study) 

 

Id. 
Network 

name 

Quality  

(training) [%] 

Error 

(training) 

Activation 

(hidden) 

Activation 

(output) 

Cutting force component Fx 

1 MLP 2-4-1 99.97 4.555 Logistic Exponential 

2 MLP 2-3-1 99.83 27.445 Tanh Tanh 

3 RBF 2-9-1 99.96 48.61 Gaussian Linear 

4 RBF 2-7-1 99.92 115.35 Gaussian Linear 

Cutting force component Fy 

1 MLP 2-3-1 99.97 4.524 Logistic Exponential 

2 MLP 2-9-1 99.98 2.818 Logistic Linear 

3 RBF 2-7-1 97.83 322.578 Gaussian Linear 

4 RBF 2-9-1 98.52 220.881 Gaussian Linear 

Cutting force component Fz 

1 MLP 2-8-1 99.96 9.726 Logistic Exponential 

2 MLP 2-3-1 99.95 9.942 Tanh Linear 

3 RBF 2-8-1 99.70 68.65 Gaussian Linear 

4 RBF 2-9-1 99.70 68.65 Gaussian Linear 

 

As a result of conducted neural network simulations of cutting force compo-

nents emerging in AZ91HP milling, models for each component were developed 

on the basis of which component value could be determined. The figures below 

present the results of the cutting force component simulation depending on the 

cutting speed vc and the feed per tooth fz, taking into account the models of the 

highest quality and the most insignificant training error: Fx – a model  

of the neural network MLP 2-4-1 (Figure 3), Fy – MLP 2-9-1 (Figure 4)  

and Fz – MLP 2-8-1 (Figure 5). On their basis, it is possible to determine  

the value of individual force components for specific values of the cutting speed 

vc and feed per tooth fz. When the values vc and fz are entered into the Statistica 

programme, it provides the value of the adequate cutting force component. 
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Fig. 3. The simulation results of the cutting force component Fx based on the cutting speed vc 

and feed per tooth fz for the neural network MLP 2-4-1 model (own study) 

 

 

 

 

Fig. 4. The simulation results of the cutting force component Fy based on the cutting speed vc 

and feed per tooth fz for the neural network MLP 2-9-1 model (own study) 
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Fig. 5. The simulation results of the cutting force component Fz based on the cutting speed vc 

and feed per tooth fz for the neural network MLP 2-8-1 model (own study) 

 

Models developed with the use of neural networks are a tool which allows 

specifying maximum values of the cutting force components. Modelling results 

can be of help to the technologists in determining technological parameters  

of machining. The simulation of the cutting force components can be employed 

for the creation of a computer system supporting technologist’s decisions. In the 

presented study, the variable elements of the model were cutting speed vc and 

feed per tooth fz, whereas other parameters of the process such as cutting depth 

ap, cutting width ae, helix angle λs were constant.  
 

 

4. SUMMARY AND CONCLUSIONS 
 

It seems reasonable to conduct further research and simulations comprising 

solely variable parameters, which would enable application of models in a wider 

range of scenarios. The undertaken study will aim at increasing the number of 

vectors in a training sequence. In consequence, the representation of the actual 

functional relations presented by the model will be more accurate.  

The results of the simulation create an opportunity to predict the non-linear 

processes. The simulations of such processes can be of considerable significance 

in a situation when little input data is available in relation to the need to obtain 

optimum results. Both the outcomes of the study and the simulations performed 

on their basis prove that there is a possibility to design a precise tool for 

modelling phenomena emerging during machining. The developed model 

enables testing various configurations of cutting parameters without the need to 
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perform machining tests, which are frequently laborious, time-consuming  

and requiring expensive practical testing. Initial determination of parameters  

and expected cutting force component values on the basis of simulation can 

reduce testing time for a new batch of products as well as allow economising  

on material, increasing the effectiveness and production capacity. 
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