PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flotation performance of a novel collector, ethyl o-mesitylsulfonylacetohydroxamate, for bastnaesite ores

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Existing collectors used in the flotation process of bastnaesite ores are characterized by the poor flotation performance and low recovery. In this paper, from the perspective of molecular structure, ethyl O-mesitylsulfonylacetohydroxamate (C1) was selected as a novel collector for bastnaesite ores, and compared with the most commonly used collector, salicylhydroxamic acid (C2), in the flotation test with bastnaesite ore with fine mineral particles, complex embedding and a high mud content. The flotation test confirmed that C1 had the better collection ability and flotation performance than C2. Then, the adsorption mechanisms between collectors (C1 and C2) and bastnaesite surface were explored based on first principles thinking. The adsorption energies between collectors (C1 and C2) and the (110) plane of bastnaesite were respectively calculated as -1.79 eV and -1.44 eV and corresponding adsorption heights were respectively 1.65 Å and 2.43 Å. These data indicated that C1 had the better affinity to the (110) plane of bastnaesite and the better binding. The calculation results of partial density of states (PDOS) showed that both collectors underwent significant orbital hybridization with the (110) plane of bastnaesite, suggesting strong electronic interactions.
Rocznik
Strony
art. no. 185550
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
  • College of Science, Xichang University, Xichang 615000, China
autor
  • College of Science, Xichang University, Xichang 615000, China
autor
  • College of Science, Xichang University, Xichang 615000, China
redaktor
  • College of Science, Xichang University, Xichang 615000, China
autor
  • College of Science, Xichang University, Xichang 615000, China
autor
  • College of Science, Xichang University, Xichang 615000, China
autor
  • College of Science, Xichang University, Xichang 615000, China
Bibliografia
  • ANDERSON, C., 2021.Beneficiation of bastnaesite ore with new flotation collector ligands. AMMS. 7(2), 789-800.
  • BOLONIN, A.V., 2018.The chemical mechanism of the formation of Fluorite-Barite-Siderite carbonatite in Karasug Fe-F-Ba-Sr-REE deposit. Open J. Geol. 08(04), 399-403.
  • BOULANGER, J.-F., BAZIN, C., TURGEON, K., 2019.Effect of depressants and temperature on bastnaesite and monazite flotation separation from a Canadian rare earth element (REE) ore. Minerals. 9(4), 225.
  • CAO, S., CAO, Y., MA, Z., LIAO, Y., ZHANG, X., 2020.Structural and electronic properties of bastnaesite and implications for surface reactions in flotation. J.Rare Earths. 38(3), 332-338.
  • CHEN, J., 2021.The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry. Miner. Eng. 171, 107067.
  • DONNAY, G., DONNAY, J.D.H., 1953.The crystallography of bastnaesite, parisite, roentgenite, and synchisite. Am. Mineral.:Journal of Earth and Plane.Mater. 38(11-12), 932-963.
  • DUAN, H., LIU, W., WANG, X., LIU, W., ZHANG, N., ZHOU, S., 2020a.Flotation separation of bastnaesite from calcite using novel octylmalon dihydroxamic acid as collector. J. Mol. Liq. 312, 113484.
  • DUAN, H., LIU, W., WANG, X., ZHAO, L., FANG, P., GU, X., 2020b.Preparation of a novel bis hydroxamic collector and its impact on bastnaesite flotation. Miner. Eng. 156, 106496.
  • ERNZERHOF, M., PERDEW, J.P., BURKE, K., 1996.Density functionals: Where do they come from, why do they work?Density functional theory I: functionals and effective potentials. 1-30.
  • FAN, H., YANG, X., QI, J., LIU, G., QIN, J., 2021.A comparative investigation into floatability of bastnaesite with three di/trialkyl phosphate surfactants. J.Rare Earths. 39(11), 1442-1449.
  • GONG, G., LIU, J., HAN, Y., ZHU, Y., 2021.Experimental and density functional theory studies of the effects and mechanisms of Cu2+ on flotation separation of cassiterite from fluorite. J. Mol. Liq. 322, 114907.
  • GUO, C., HOU, S., WANG, W., JIN, H., 2022a.Surface chemistry of xanthan gum interactions with bastnaesite and fluorite during flotation. Miner. Eng. 189, 107891.
  • GUO, Z., KHOSO, S.A., WANG, J., ZHANG, C., GAO, Z., SUN, W., TIAN, M., LIU, Y., 2022b.Interaction mechanism of 2-hydroxy-3-naphthyl hydroxamic acid and 1-hydroxy-2-naphthyl hydroxamic acid in the flotation separation of bastnaesite/fluorite: Experiments and first-principles calculations. Sep. Purif. Technol. 285, 120307.
  • HU, W., TIAN, K., ZHANG, Z., GUO, J., LIU, X., YU, H., WANG, H., 2021.Flotation and tailing discarding of copper cobalt sulfide ores based on the process mineralogy characteristics. Minerals. 11(10), 1078.
  • JIAO, Y., QIU, K.-H., ZHANG, P.-C., LI, J.-F., ZHANG, W.-T., CHEN, X.-F., 2020.Process mineralogy of Dalucao rare earth ore and design of beneficiation process based on AMICS. Rare Met. 39(8), 959-966.
  • KANG, Y., LIU, S., 2021.The development history and latest progress of deep-sea polymetallic nodule mining technology. Minerals. 11(10), 1132.
  • LIN, Y., CHEN, C., WANG, W., JIANG, Y., CAO, X., 2020.Beneficial effects and mechanism of lead ions for bastnaesite flotation with octyl hydroxamic acid collector. Miner. Eng. 148, 106199.
  • LIU, J., PENG, B., ZHAO, L., BAI, F., LEI, Z., 2021.Selection of an appropriate fepressant in flotation separation of molybdenum oxide from fluorapatite. Minerals. 11(10), 1110.
  • LIU, P., GUO, Z., ZHANG, W., TIAN, M., SUN, W., 2024.N-[6-(hydroxyamino)-6-oxohexyl]octanamide: A collector derived from the structure of octyl hydroxamic acid and its application in bastnaesite flotation. Sep. Purif. Technol. 331, 125562.
  • LIU, T., CHEN, J., 2021.Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol. 276, 119263.
  • LIU, W., MCDONALD, L.W., WANG, X., MILLER, J.D., 2018.Bastnaesite flotation chemistry issues associated with alkyl phosphate collectors. Miner. Eng. 127, 286-295.
  • LIU, W., WANG, X., MILLER, J.D., 2019.Collector chemistry for bastnaesite flotation –recent developments. Miner. Process. Extr. Metall. Rev. 40(6), 370-379.
  • LIU, W., WANG, X., WANG, Z., MILLER, J.D., 2016.Flotation chemistry features in bastnaesite flotation with potassium lauryl phosphate. Miner. Eng. 85, 17-22.
  • NI, Y., HUGHES, J.M., MARIANO, A.N., 1993.The atomic arrangement of bastnäesite-(Ce), Ce (CO3) F, and structural elements of synchysite-(Ce), röntgenite-(Ce), and parisite-(Ce). Am. Mineral. 78(3-4), 415-418.
  • NIE, Q., WANG, M., QIU, T., QIU, X., 2020.Density functional theory and XPS studies of the adsorption of cyanide on chalcopyrite surfaces. ACS omega. 5(36), 22778-22785.
  • PARK, I., KANAZAWA, Y., SATO, N., GALTCHANDMANI, P., JHA, M.K., TABELIN, C.B., JEON, S., ITO, M., HIROYOSHI, N., 2021.Beneficiation of low-grade rare earth ore from khalzan buregtei deposit (Mongolia) by magnetic separation. Minerals. 11(12), 1432.
  • QUEZADA, G.R., TOLEDO, P.G., 2019.Structure of the interface between lithium-rich spodumene and saltwater by density functional theory calculations and molecular dynamics Simulations. J. Phys. Chem. C. 124(2), 1446-1457.
  • REPUB, S.A.O.T.P.S., REGULATION, S.A.F.M., 2020. Rare earth metals and their compounds-Determination of total rare earth contents, In National Standards of the People's Republic of China, ed. REPUB, S.A.O.T.P.S. Standards Press of China, China, pp. 1-11.
  • SAHRAEI, A.A., LARACHI, F., 2020.How do surface defects change local wettability of the hydrophilic ZnS surface? Insights into sphalerite flotation from density functional theory calculations. J. Phys. Chem. C. 125(1), 998-1009.
  • SEGALL, M.D., LINDAN, P.J.D., PROBERT, M.J., PICKARD, C.J., HASNIP, P.J., CLARK, S.J., PAYNE, M.C., 2002.First-principles simulation: ideas, illustrations and the CASTEP code[J]., 2002, 14(11): 2717.J. Phys.: Condens.Matter. 14(11), 2717.
  • SUN, X., WU, B., HU, M., QIU, H., DENG, J., CAI, J., JIN, X., 2021.Flotation depression of arsenopyrite using sodium nitrobenzoate under alkaline conditions. Minerals. 11(11), 1216.
  • WANG, C., SHI, H., QIU, X., HU, Z., 2020a.Difference in flotation behavior between fine-grained bastnaesite and barite. J. Chin. Soc. Rare Earths.38(6), 816-822.
  • WANG, D., LIU, D., MAO, Y., SUN, R., LIU, R., WEN, S., 2021.Effect of fluoride ion on the separation of fluorite from calcite using flotation with acidified water glass. Minerals. 11(11), 1203.
  • WANG, J., ZU, P., YI, S., CAO, Z., 2020b.Preconcentration ofiron, rare earth, and fluorite from bayan obo ore using superconducting magnetic separation. Mining.Metall.Explor. 38(2), 701-712.
  • WANG, W., LI, E., PENG, Z., GUO, C., HOU, S., LI, Q., 2023.Flotation separation of bastnaesite from monazite using depressant dextrin hydrate and its depression mechanism. Miner. Eng. 200, 108151.
  • WANG, Z., WU, H., XU, Y., SHU, K., FANG, S., XU, L., 2020c.The effect of dissolved calcite species on the flotation of bastnaesite using sodium oleate. Miner. Eng. 145, 106095.
  • WANG, Z., WU, H., XU, Y., SHU, K., YANG, J., LUO, L., XU, L., 2020d.Effect of dissolved fluorite and barite species on the flotation and adsorption behavior of bastnaesite. Sep. Purif. Technol. 237, 116387.
  • WANG, Z., WU, H., YANG, J., TANG, Z., LUO, L., SHU, K., XU, Y., XU, L., 2020e.Selective flotation separation of bastnaesite from calcite using xanthan gum as a depressant. Appl. Surf. Sci. 512, 145714.
  • XIONG, W., DENG, J., CHEN, B., DENG, S., WEI, D., 2018.Flotation-magnetic separation for the beneficiation of rare earth ores. Miner. Eng. 119, 49-56.
  • XU, L., WANG, Z., SHU, K., WU, H., HU, Y., 2022.Surface chemistry considerations of gangue dissolved species in the bastnaesite flotation system. Fundam. Res. 2(5), 748-756.
  • XU, Y., XU, L., WU, H., TIAN, J., WANG, Z., GU, X., 2020a.The effect of citric acid in the flotation separation of bastnaesite from fluorite and calcite using mixed collectors. Appl. Surf. Sci. 529, 147166.
  • XU, Y., XU, L., WU, H., WANG, Z., SHU, K., FANG, S., ZHANG, Z., 2020b.Flotation and co–adsorption of mixed collectors octanohydroxamic acid/sodium oleate on bastnaesite. J. Alloys Compd. 819, 152948.
  • Y., Z., W., Y., 1998.Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 80(4), 890.
  • YAO, J., SUN, H., BAN, X., YIN, W., 2021.Analysis of selective modification of sodium dihydrogen phosphate on surfaces of magnesite and dolomite: Reverse flotation separation, adsorption mechanism, and density functional theory calculations. Colloids Surf., A. 618, 126448.
  • YU, Q., TIAN, F., CAO, Y., FAN, G., HAO, H., PENG, W., ZHOU, G., LI, P., 2021.Application of Waste Engine Oil for Improving Ilmenite Flotation Combined with Sodium Oleate Collector. Minerals. 11(11), 1242.
  • ZHANG, C., ZHU, X., PENG, C., GUO, C., 2022.Adsorption of rare earth La3+by α-zirconium phosphate: An experimental and density functional theory study. Journal of Molecular Liquids. 368, 120668.
  • ZHANG, Q., NIU, C., BU, X., BILAL, M., NI, C., PENG, Y., 2021.Enhancement of Flotation Performance of Oxidized Coal by the Mixture of Laurylamine Dipropylene Diamine and Kerosene. Minerals. 11(11), 1271.
  • ZHOU, H., LIU, S., YI, H., SONG, S., JIA, F., 2023.Flotation of bastnaesite by mixed collectors and adsorption mechanism. Chem. Phys. Lett. 830, 140793.
  • ZHU, X., LIN, Y., HUANG, Y., ZHU, Y., SHI, C., WANG, W., 2020.Adsorption of ferric ions on the surface of bastnaesite and its significance in flotation. Miner. Eng. 158, 106588.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78436a75-1dc1-4b29-8740-31d37b84a374
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.