Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let X be a separable Banach function space on the unit circle T and let H[X] be the abstract Hardy space built upon X.We show that the set of analytic polynomials is dense in H[X] if the Hardy–Littlewood maximal operator is bounded on the associate space X'. Fis result is specified to the case of variable Lebesgue spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
131--141
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
Bibliografia
- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston 1988.
- [2] Yu. M. Berezansky, Z. G. Sheýel, and G. F. Us, Functional Analysis, Vol. 1, Birkhäuser, Basel 1996.
- [3] J. B. Conway, The Theory of Subnormal Operators, American Mathematical Society, Providence, RI 1991.
- [4] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Birkhäuser, Basel 2013.
- [5] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin 1993.
- [6] L. Diening, P. Harjulehto, P. Hästö, and M. Růžicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Berlin 2011.
- [7] E. Kapanadze and T. Kopaliani, A note on maximal operator on Lp(t)(Ώ) spaces, Georgian Math. J. 15 (2008), 307-316.
- [8] A. Yu. Karlovich, On the essential norm of the Cauchy singular integral operator in weighted rearrangement-invariant spaces, Integr. Equ. Oper. Teory 38 (2000), 28-50.
- [9] Y. Katznelson, An Introduction to Harmonic Analysis, Dower Publications, Inc., New York 1976.
- [10] V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, Integral Operators in Non-Standard Function Spaces. Volume 1: Variable Exponent Lebesgue and Amalgam Spaces, Birkhäuser Verlag, Basel 2016.
- [11] S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence 1982.
- [12] A. Lerner, Some remarks on the Hardy–Littlewood maximal function on variable Lp spaces, Math. Z. 251(2005), 509-521.
- [13] K. Leśnik and L. Maligranda, Interpolation of abstract Cesàro, Copson and Tandori spaces, Indag. Math., New Ser. 27 (2016), 764-785.
- [14] L. Maligranda, Hidegoro Nakano (1909-1974)–on the centenary of his birth, (Kitakyushu, September 14-17, 2009), Proceedings of the 3rd international symposium on Banach and function spaces (ISBFS 2009) (M. Kato, ed.), Yokohama Publishers, Yokohama, 2011, 99-171.
- [15] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis. Vol. I., Cambridge Studies in Advanced Mathematics, vol. 137, Cambridge University Press, Cambridge 2013.
- [16] I. I. Sharapudinov, Uniform boundedness in Lp (p=p(x)) of some families of convolution operators, Math. Notes 59 (1996), 205-212.
- [17] Q. Xu, Notes on interpolation of Hardy spaces, Ann. Inst. Fourier 42 (1992), 875-889.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7842d701-f5bc-4f68-bad2-26c764f3bfc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.