Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to develop a theory of non-smooth decomposition in Triebel-Lizorkin-Morrey spaces. As a byproduct, we obtain the non-smooth decomposition results for Hardy spaces and Morrey spaces. The result extends what Frazier and Jawerth obtained in 1990 with the parameters subject to a condition. Unlike this foregoing work, the result in this paper is valid for all admissible parameters for Triebel-Lizorkin-Morrey spaces. As an application, an improvement of the Olsen inequality is obtained.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
37--56
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
autor
- Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
- Department of Mathematics Analysis and the Theory of functions, Peoples’ Friendship University of Russian, Moscow, Russian
Bibliografia
- [1] K. Asami, Non-smooth decomposition of homogeneous Triebel-Lizorkin spaces with applications to the Marcinkiewicz integral, Int. J. Appl. Math. 30 (2017), no. 6, 547-568.
- [2] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34-170, DOI 10.1016/0022-1236(90)90137-a.
- [3] L. Grafakos, Modern Fourier Analysis, Graduate texts in mathematics, vol. 250, Springer, New York 2014, DOI 10.1007/978-0-387-09434-2.
- [4] D. D. Haroske and L. Skrzypczak, Continuous embeddings of Besov-Morrey function spaces, Acta Math. Sin. 28 (2012), no. 7, 1307-1328, DOI 10.1007/s10114-012-1119-7.
- [5] D. D. Haroske and L. Skrzypczak, Embeddings of Besov-Morrey spaces on bounded domains, Studia Math. 218 (2013), no. 2, 119-144, DOI 10.4064/sm218-2-2.
- [6] D. D. Haroske and L. Skrzypczak, On Sobolev and Franke-Jawerth embeddings of smoothness Morrey spaces, Rev. Mat. Complut. 27 (2014), no. 2, 541-573, DOI 10.1007/s13163-013-0143-1.
- [7] M. Holschneider, Wavelets, An Analytic Tools, Oxford 1995.
- [8] T. Iida, Y. Sawano, and H. Tanaka, Atomic decomposition for Morrey spaces, Z. Anal. Anwend. 33 (2014), no. 2, 149-170, DOI 10.4171/zaa/1504.
- [9] H. Jia and H. Wang, Decomposition of Hardy-Morrey spaces, J. Math. Anal. Appl. 354 (2009), 99-110, DOI 10.1016/j.jmaa.2008.12.051.
- [10] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. PDE 19 (1994), 959-1014, DOI 10.1080/03605309408821042.
- [11] A. L. Mazzucato, Decomposition of Besov-Morrey spaces, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., vol. 320, Providence, RI, 2003, 279-294.
- [12] A. M. Najafov, Some properties of functions from the intersection of Besov-Morrey type spaces with dominant mixed derivatives, Proc. A. Razmadze Math. Inst. 139 (2005), 71-82.
- [13] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), 3665-3748, DOI 10.1016/j.jfa.2012.01.004.
- [14] S. Nakamura, T. Noi, and Y. Sawano, Generalized Morrey spaces and trace operator, Science China Mathematics 59 (2016), no. 2, 281-336, DOI 10.1007/s11425-015-5096-z.
- [15] Y. V. Netrusov, Some imbedding theorems for spaces of Besov-Morrey type, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 139 (1984), 139-147, DOI 10.1007/bf01091807.
- [16] P. Olsen, Fractional integration, Morrey spaces and Schrödinger equation, Comm. Partial Differential Equations 20 (1995), 2005-2055, DOI 10.1080/03605309508821161.
- [17] M. Rosenthal, Local means, wavelet bases and wavelet isomorphisms in Besov-Morrey and Triebel-Lizorkin-Morrey spaces, Math. Nachr. 286 (2013), no. 1, 59-87, DOI 10.1002/mana.201200020.
- [18] Y. Sawano, Wavelet characterization of Besov-Morrey and Triebel-Lizorkin-Morrey spaces, Funct. Approx. Comment. Math. 38 (2008), no. 1, 93-107, DOI 10.7169/facm/1229624654.
- [19] Y. Sawano, A note on Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces, Acta Math. Sinica 25 (2009), no. 8,1223-1242, DOI 10.1007/s10114-009-8247-8.
- [20] Y. Sawano, Identification of the image of Morrey spaces by the fractional integral operators, Proc. A. Razmadze Math. Inst. 149 (2009), 87-93.
- [21] Y. Sawano, Theory of Besov spaces, Development in Mathematics, vol. 56, Springer 2018, DOI 10.1007/978-981-13-0836-9.
- [22] Y. Sawano, S. Sugano, and H. Tanaka, Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math. Soc. 363 (2011), 6481-6503, DOI 10.1090/s0002-9947-2011-05294-3.
- [23] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sinica 21 (2005), no. 6, 1535-1544, DOI 10.1007/s10114-005-0660-z.
- [24] Y. Sawano and H. Tanaka, Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces, Math. Z. 257 (2007), no. 4, 871-905, DOI 10.1007/s00209-007-0150-3.
- [25] Y. Sawano and H. Tanaka, The Fatou property of block spaces, J. Math. Sci. Univ. Tokyo 22 (2015), 663-683.
- [26] Y. Sawano, D. Yang, and W. Yuan, New applications of Besov-type and Triebel-Lizorkin-type spaces, J. Math. Anal. Appl. 363 (2010), 73-85, DOI 10.1016/j.jmaa.2009.08.002.
- [27] L. Tang and J. Xu, Some properties of Morrey type Besov-Triebel spaces, Math. Nachr. 278 (2005), 904-917, DOI 10.1002/mana.200310281.
- [28] F. Treves, Topological Vector spaces, Distributions and Kernels, Academic Press, New York 1967.
- [29] H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Ark. Mat. 11 (1973), 13-64, DOI 10.1007/bf02388506.
- [30] H. Triebel, Local function spaces, heat and Navier-Stokes equations, EMS Tracts in Mathematics, vol. 20, European Mathematical Society, Zurich 2013, x+232 pp., DOI 10.4171/123.
- [31] H. Wang, Decomposition for Morrey type Besov-Triebel spaces, Math. Nachr. 282 (2009), no. 5, 774-787, DOI 10.1002/mana.200610770.
- [32] D. Yang and W. Yuan, A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces, J. Funct. Anal. 255 (2008), 2760-2809, DOI 10.1016/j.jfa.2008.09.005.
- [33] D. Yang and W. Yuan, New Besov-type spaces and Triebel-Lizorkin-type spaces including Q spaces, Math. Z. 265 (2010), 451-480, DOI 10.1007/s00209-009-0524-9.
- [34] W. Yuan, W. Sickel, and D. Yang, Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, vol. 2005, Springer-Verlag 2010, xi+281 pp., DOI 10.1007/978-3-642-14606-0_7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78417ac2-0c2b-4a5d-b160-80dbc7b0fb03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.