PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations on the luminescence properties of quartz and feldspars extracted from loess in the Canterbury Plains, New Zealand South Island

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The applicability of the single-aliquot regenerative-dose (SAR) protocol, by using the optically stimulated luminescence (OSL) signal of quartz as well as the post-infrared–infrared (pIRIR) signals of polymineral fine grains, namely pIRIR225 and pIRIR290, was assessed for dating loess in New Zealand South Island. OSL signals of quartz grains displayed low sensitivity. However, the application of repeated irradiation/bleaching cycles did not result in an increase in sensitivity; annealing in the 300–500°C temperature range generated the sensitisation of both the 110°C thermoluminescence (TL) peak as well as the OSL signal, likely by activation of yet unidentified luminescence centres. After heating, the quartz signal is comparable to that of ideal samples, but the annealing is precluding successful dating. On the other hand, feldspar infrared-stimulated signals displayed satisfactory properties, allowing estimation of ages ranging from 14 ± 1–29 ± 3 ka for the investigated deposit. It was shown that pIRIR225 and pIRIR290 methods have potential for dating loess in the South Island of New Zealand, based on the following observations: (i) Dose recovery tests were successful with recovered-to-given dose ratios with a <10% deviation from unity, (ii) constant residual values of about 4 Gy and about 10 Gy were obtained after exposures for 48 h in the case of pIRIR225 signals and 96 h in the case of pIRIR290 signals, respectively, (iii) while a slight dose-dependence of the residual was reported, and for a dose as large as 1600 Gy the residual values are ≅9 Gy and ≅19 Gy for pIRIR225 and pIRIR290 signals, respectively.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
46--60
Opis fizyczny
Bibliogr. 79 poz., rys.
Twórcy
autor
  • Faculty of Environmental Science and Engineering, Babes-Bolyai University Cluj-Napoca, Romania
  • Interdisciplinary Research Institute on Bio-Nano-Sciences, Environmental Radioactivity and Nuclear Dating Centre, Babes-Bolyai University Cluj-Napoca, Romania
autor
  • Faculty of Environmental Science and Engineering, Babes-Bolyai University Cluj-Napoca, Romania
  • Interdisciplinary Research Institute on Bio-Nano-Sciences, Environmental Radioactivity and Nuclear Dating Centre, Babes-Bolyai University Cluj-Napoca, Romania
autor
  • Helmholtz Centre for Ocean Research, GEOMAR Kiel, Germany
  • Marine Geology & Seafloor Surveying, Department of Geosciences, University of Malta Malta
  • Biomolecular Physics Department, Babes-Bolyai University Cluj-Napoca, Romania
  • RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS) Babeş-Bolyai University Cluj-Napoca, Romania
  • Faculty of Environmental Science and Engineering, Babes-Bolyai University Cluj-Napoca, Romania
  • Interdisciplinary Research Institute on Bio-Nano-Sciences, Environmental Radioactivity and Nuclear Dating Centre, Babes-Bolyai University Cluj-Napoca, Romania
Bibliografia
  • 1. Aitken MJ and Alldred JC, 1972. The assessment of error limits in thermoluminescent dating. Archaeometry 14: 257–267.
  • 2. Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, London: 360pp.
  • 3. Almond PC, Moar NT and Lian OB, 2001. Reinterpretation of the glacial chronology of South Westland, New Zealand. New Zealand Journal of Geology and Geophysics 44(1): 1–15, DOI: 10.1080/00288306.2001.9514917.
  • 4. Almond PC, Shanhun FL, Rieser U and Shulmeister J, 2007. An OSL, radiocarbon and tephra isochron-based chronology for Birdlings Flat loess at Ahuriri Quarry, Banks Peninsula, Canterbury, New Zealand. Quateranary Geochronology 2(1–4): 4–8, DOI: 10.1016/J.QUAGEO.2006.06.002.
  • 5. Alloway BV, Pillans BJ, Sandhu AS and Westgate JA, 1993. Revision of the marine chronology in the Wanganui Basin, New Zealand, based on isothermal plateau fission-track dating of tephra horizons. Sedimentary Geology 82(1–4): 299–310, DOI: 10.1016/0037-0738(93)90128-R.
  • 6. Alloway BV, Lowe DJ, Barrell DJ, Newnham RM, Almond PC, Augustinus PC, Bertler NA, Carter L, Litchfield NJ, McGlone MS, Shulmeister J, Vandergoes M, Williams P and NZ-INTIMATE Members, 2007. Towards a climate event stratigraphy for New Zealand over the past 30,000 years (NZ-INTIMATE project). Journal of Quaternary Science 22(1): 9–35, DOI: 10.1002/JQS.1079.
  • 7. Avram A, Constantin D, Veres D, Kelemen S, Obreht I, Hambach U, Marković SB and Timar-Gabor A, 2020. Testing polymineral post-IR IRSL and quartz SAR-OSL protocols on Middle to Late Pleistocene loess at Batajnica, Serbia. Boreas 49(3): 615–633, DOI: 10.1111/bor.12442.
  • 8. Balescu S, Jordanova D, Brisson LF, Hardy F, Huot S and Lamothe M, 2020. Luminescence chronology of the Northeastern Bulgarian loess-paleosol sequences (Viatovo and Kaolinovo). Quaternary International 552: 15–24, DOI: 10.1016/j.quaint.2019.04.020.
  • 9. Bell DH and Trangmar BB, 1987. Regolith materials and erosion processes on the Port Hills, Christchurch, New Zealand. In: 5th International Conference & Field Workshop on Landslides. Christchurch, pp. 93–105.
  • 10. Berger GW, Pillans BJ and Tonkin PJ, 2001. Luminescence chronology of loess-paleosol sequences from Canterbury, South Island, New Zealand. New Zealand Journal of Geology and Gheophysics 44(4): 501–516, DOI: 10.1080/00288306.2001.9514952.
  • 11. Berger GW, Pillans BJ, Bruce JG and McIntosh PD, 2002. Luminescence chronology of loess-paleosol sequences from southern South Island, New Zealand. Quaternary Science Reviews 21(16–17): 1899–1913, DOI: 10.1016/S0277-3791(02)00021-5.
  • 12. Borella J, Quigley M, Sohbati R, Almond P, Gravley DM and Murray A, 2016. Chronology and processes of late Quaternary hillslope sedimentation in the Eastern South Island, New Zealand. Journal of Quaternary Science 31(7): 691–712, DOI: 10.1002/JQS.2905.
  • 13. Bøtter-Jensen L, Larsen NA, Mejdahl, V, Poolton NR, Morris, MF, McKeever, SW, 1995. Luminescence sensitivity changes in quartz as a result of annealing. Radiation Measurement 24(4): 535–541, DOI: 10.1016/1350-4487(95)00006-Z.
  • 14. Buylaert JP, Murray AS and Thomsen KJ, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI: 10.1016/J.RADMEAS.2009.02.007.
  • 15. Buylaert JP, Huot S, Murray AS and Van Den Haute P, 2011a. Infrared stimulated luminescence dating of an Eemian (MIS 5e) site in Denmark using K-feldspar. Boreas 40(1): 46–56, DOI: 10.1111/J.1502-3885.2010.00156.X.
  • 16. Buylaert JP, Thiel C, Murray A, Vandenberghe D, Yi S and Lu H, 2011b. IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese loess plateau. Geochronometria 38(4): 432–440, DOI: 10.2478/s13386-011-0047-0.
  • 17. Buylaert JP, Jain M, Murray AS, Thomsen KJ, Thiel C and Sohbati R, 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41(3): 435–451, DOI: 10.1111/J.1502-3885.2012.00248.X.
  • 18. Campbell IB, 1986. New occurrences and distribution of Kawakawa Tephra in South Island, New Zealand. New Zealand Journal of Geology and Geophysics 29(4): 425–435, DOI: 10.1080/00288306.1986.10422164.
  • 19. Chruścińska A, Oczkowski HL, Przegiętka K, 1996. Trap spectra of annealed quartz. Acta Physica Polonica A 4(89): 555–568. http://repozytorium.umk.pl/handle/item/1917.
  • 20. Dietze M, Kreutzer S, Fuchs MC, Burrow C, Fischer M and Schmidt C, 2013. A practical guide to the R package luminescence. Ancient TL 31(1): 11–18.
  • 21. Duller GA, 2003. Distinguishing quartz and feldspars in single grain luminescence measurements. Radiation Measurements 37(2): 161–165, DOI: 10.1016/S1350-4487(02)00170-1.
  • 22. Eden DN, Froggatt PC and Mclntosh PD, 1992. The distribution and composition of volcanic glass in late Quaternary loess deposits of Southern South Island, New Zealand, and some possible correlations. New Zealand Journal of Geology and Geophysics 35(1): 69–79, DOI: 10.1080/00288306.1992.9514501.
  • 23. Eden DN and Hammond AP, 2003. Dust accumulation in the New Zealand region since the last glacial maximum. Quaternary Science Reviews 22(18–19): 2037–2052, DOI: 10.1016/S0277-3791(03)00168-9.
  • 24. Frechen M, Schweitzer U and Zander A, 1996. Improvements in sample preparation for the fine grain technique. Ancient TL 14(2): 15–17.
  • 25. Goh KM, Tonkin PJ and Rafter TA, 1978. Implications of improved radiocarbon dates of Timaru peats on Quaternary loess stratigraphy. New Zealand Journal of Geology and Geophysics 21(4): 463–466, DOI: 10.1080/00288306.1978.10424071.
  • 26. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: Update. Ancient TL 29(1): 5–8.
  • 27. Guralnik B, Ankjærgaard C, Jain M, Murray AS, Müller A, Wälle M, Lowick SE, Preusser F, Rhodes EJ, Wu TS, Mathew G, Herman F, 2015. OSL-thermochronometry using bedrock quartz: A note of caution. Quaternary Geochronology 25: 37–48, DOI: 10.1016/j.quageo.2014.09.001.
  • 28. Hammond AP, Goh KM, Tonkin PJ and Manning MR, 1991. Chemical pretreatments for improving the radiocarbon dates of peats and organic silts in a gley podzol environment: Grahams Terrace, North Westland. New Zealand Journal of Geology and Geophysics 34(2): 191–194, DOI: 10.1080/00288306.1991.9514456.
  • 29. Hansen V, Murray A, Buylaert JP, Yeo EY and Thomsen K, 2015. A new irradiated quartz for beta source calibration. Radiation Measurements 81: 123–127, DOI: 10.1016/J.RADMEAS.2015.02.017.
  • 30. Holdaway RN, Roberts RG, Beavan-Athfield NR, Olley JM and Worthy TH, 2002. Optical dating of quartz sediments and accelerator mass spectrometry 14C dating of bone gelatin and moa eggshell: A comparison of age estimates for non-archaeological deposits in New Zealand. Journal of the Royal Society of New Zealand 32(3): 463–505, DOI: 10.1080/03014223.2002.9517705.
  • 31. Hormes A, Preusser F, Denton G, Hajdas I, Weiss D, Stocker TF and Schlüchter C, 2003. Radiocarbon and luminescence dating of overbank deposits in outwash sediments of the Last Glacial Maximum in North Westland, New Zealand. New Zealand Journal of Geology and Geophysics 46(1): 95–106, DOI: 10.1080/00288306.2003.9514998.
  • 32. Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI: 10.1139/E01-013.
  • 33. Kohn BP, Pillans B and McGlone MS, 1992. Zircon fission track age for middle Pleistocene Rangitawa Tephra, New Zealand: Stratigraphic and paleoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 95(1–2): 73–94, DOI: 10.1016/0031-0182(92)90166-3.
  • 34. Krishnan RS, 1945. Raman spectrum of quartz. Nature 155(3937): 452, DOI: 10.1038/155452a0.
  • 35. Lang A, Lindauer S, Kuhn R and Wagner GA, 1996. Procedures used for optically and infrared stimulated luminescence dating of sediments in Heidelberg. Ancient TL 14(3): 7–11.
  • 36. Lapp T, Kook M, Murray AS, Thomsen KJ, Buylaert JP and Jain M, 2015. A new luminescence detection and stimulation head for the Risø TL/OSL reader. Radiation Measurements 81: 178–184, DOI: 10.1016/J.RADMEAS.2015.02.001.
  • 37. Litchfield NJ and Lian OB, 2004. Luminescence age estimates of Pleistocene marine terrace and alluvial fan sediments associated with tectonic activity along coastal Otago, New Zealand. New Zealand Journal of Geology and Geophysics 47(1): 29–37, DOI: 10.1080/00288306.2004.9515035.
  • 38. Litchfield NJ and Rieser U, 2005. Optically stimulated luminescence age constraints for fluvial aggradation terraces and loess in the Eastern North Island, New Zealand. New Zealand Journal of Geology and Geophysics 48(4): 581–589, DOI: 10.1080/00288306.2005.9515135.
  • 39. Martini M, Fasoli M and Villa, I, 2014. Defect studies in quartz: Composite nature of the blue and UV emissions. Nuclear Instruments and Methods in Physics Research B, 327: 15–21, DOI 10.1016/J.NIMB.2013.09.048.
  • 40. Murray AS, 1996. Developments in optically stimulated luminescence and photo-transferred thermoluminescence dating of young sediments: Application to a 2000-years of flood deposits. Geochimica et Cosmochimica 41.Acta 60(4): 565–576, DOI: 10.1016/0016-7037(95)00418-1.
  • 42. Murray AS and Wintle AG, 2000. Luminescence dating using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73, DOI: 10.1016/S1350-4487(99)00253-X.
  • 43. Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI: 10.1016/S1350-4487(03)00053-2.
  • 44. Murray AS, Thomsen KJ, Masuda N, Buylaert JP and Jain M, 2012. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements 47(9): 688–695, DOI: 10.1016/J.RADMEAS.2012.05.006.
  • 45. Murray AS, Schmidt ED, Stevens T, Buylaert JP, Marković SB, Tsukamoto S and Frechen M, 2014. Dating middle pleistocene loess from Stari Slankamen (Vojvodina, Serbia) – Limitations imposed by the saturation behaviour of an elevated temperature IRSL signal. Catena 117: 34–42, DOI: 10.1016/J.CATENA.2013.06.029.
  • 46. Nichol SL, Lian OB and Carter CH, 2003. Sheet-gravel evidence for a late Holocene tsunami run-up on beach dunes, Great Barrier Island, New Zealand. Sedimentary Geology 155(1–2): 129–145, DOI: 10.1016/S0037-0738(02)00191-4.
  • 47. Pillans B, 1991. New Zealand Quaternary stratigraphy: An overview. Quaternary Science Reviews 10(5): 405–418, DOI: 10.1016/0277-3791(91)90004-E.
  • 48. Pillans B, 1994. Direct marine-terrestrial correlations, Wanganui Basin, New Zealand: The last 1 million years. Quaternary Science Reviews 13(3): 189–200, DOI: 10.1016/0277-3791(94)90024-8.
  • 49. Pillans B, Kohn BP, Berger G, Froggatt P, Duller G, Alloway B and Hesse P, 1996. Multi-method dating comparison for mid-Pleistocene Rangitawa Tephra, New Zealand. Quaternary Science Reviews (Quaternary Geochronology) 15(7): 641–654, DOI: 10.1016/0277-3791(96)00035-2.
  • 50. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term variations. Radiation Measurements 23: 497–500, DOI: 10.1016/1350-4487(94)90086-8.
  • 51. Preusser F, Andersen BG, Denton GH and Schlüchter C, 2005. Luminescence chronology of Late Pleistocene glacial deposits in North Westland, New Zealand. Quaternary Science Reviews 24(20–21): 2207–2227, DOI: 10.1016/J.QUASCIREV.2004.12.005.
  • 52. Preusser F, Ramseyer K and Schlüchter C, 2006. Characterisation of low OSL intensity quartz from the New Zealand Alps. Radiation Measurements 41(7–8): 871–877, DOI: 10.1016/J.RADMEAS.2006.04.019.
  • 53. Preusser F, Chithambo ML, Götte T, Martini M, Ramseyer K, Sendezera EJ, Susino GJ, Wintle AG, 2009. Quartz as a natural luminescence dosimeter. Earth Science Reviews 97(1/4): 184–214. DOI: 10.1016/j.earscirev.2009.09.006.
  • 54. Raeside JD, 1964. Loess deposits of the South Island, New Zealand, and soils formed on them. New Zealand Journal of Geology and Geophysics 7(4): 811–838, DOI: 10.1080/00288306.1964.10428132.
  • 55. Rees-Jones J, 1995. Optical dating of young sediments using fine-grain quartz. Ancient TL 13(2): 9–13.
  • 56. Rother H, Shulmeister J and Rieser U, 2009. Stratigraphy, optical dating chronology (IRSL) and depositional model of pre-LGM glacial deposits in the Hope Valley, New Zealand. Quaternary Science Reviews, 1–17, DOI: 10.1016/J.QUASCIREV.2009.11.001.
  • 57. Rowan AV, Roberts HM, Jones MA, Duller GA, Covey-Crump SJ and Brocklehurst SH, 2012. Optically stimulated luminescence dating of glaciofluvial sediments on the Canterbury Plains, South Island, New Zealand. Quaternary Geochronology 8: 10–22, DOI: 10.1016/J.QUAGEO.2011.11.013.
  • 58. Schilles T, Poolton NRJ, Bulur EN, Bøtter-Jensen L, Murray AS, Smith GM, Riedi PC and Wagner GA, 2001. A multi-spectroscopic study of luminescence sensitivity changes in natural quartz induced by high-temperature annealing. Journal of Physics D 34(5): 722–731, DOI: 10.1088/0022-3727/34/5/310.
  • 59. Shulmeister J, Thackray GD, Rieser U, Hyatt OM, Rother H, Smart CC and Evans DJ, 2010. The stratigraphy, timing and climatic implications of glaciolacustrine deposits in the middle Rakaia Valley, South Island, New Zealand. Quaternary Science Reviews 29(17–18): 2362–2381, DOI: 10.1016/J.QUASCIREV.2010.06.004.
  • 60. Sohbati R, Murray AS, Buylaert JP, Ortuno M, Cunha PP and Masana E, 2012. Luminescence dating of Pleistocene alluvial sediments affected by the Alhama de Murcia fault (eastern Betics, Spain) – A comparison between OSL, IRSL and post-IR IRSL ages. Boreas 41(2): 250–262, DOI: 10.1111/J.1502-3885.2011.00230.X.
  • 61. Sohbati R, Borella J, Murray A, Quigley M and Buylaert JP, 2016. Optical dating of loessic hillslope sediments constrains timing of prehistoric rockfall, Christchurch, New Zealand. Journal of Quaternary Science 31(7): 678–690, DOI: 10.1002/JQS.2895.
  • 62. Sparrow CL, 1948. Loess Deposits of Banks Peninsula. Unpublished MA Thesis University of New Zealand.
  • 63. Stevens T, Marković SB, Zech M, Hambach U and Sümegi P, 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews 30(5–6): 662–681, DOI: 10.1016/J.QUASCIREV.2010.12.011.
  • 64. Suggate RP, 1990. Late pliocene and quaternary glaciations of New Zealand. Quaternary Science Reviews 9(2–3): 175–197, DOI: 10.1016/0277-3791(90)90017-5.
  • 65. Thiel C, Buylaert JP, Murray A, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI: 10.1016/J.QUAINT.2010.05.018.
  • 66. Thomsen K, Murray A and Jain M, 2011. Stability of IRSL signals from sedimentary K-feldspar samples. Geochronometria 38(1): 1–13, DOI: 10.2478/s13386-011-0003-z.
  • 67. Toyoda S, Hattori W, 2000. Formation and decay of the E1’ center and of its precursor. Applied Radiation and Isotopes 52(5): 1351–1356. DOI: 10.1016/S0969-8043(00)00094-4.
  • 68. Vasiliniuc Ș, Vandenberghe DA, Timar-Gabor A, Panaiotu C and Cosma C, 2012. Testing the potential of elevated temperature post-IR IRSL signals for dating Romanian loess. Quaternary Geochronology 10: 75–80, DOI: 10.1016/J.QUAGEO.2012.02.014.
  • 69. Veres D, Tecsa V, Gerasimenko N, Zeeden C, Hambach U and Timar-Gabor A, 2018. Short-term soil formation events in last glacial east European loess, evidence from multi-method luminescence dating. Quaternary Science Reviews 200: 34–51, DOI: 10.1016/J.QUASCIREV.2018.09.037.
  • 70. Veronese I, Giussani A, Goksu HY, Martini M, 2004. The trap parameters of electrons in intermediate energy levels in quartz. Radiation Measurements 38(4–6): 743–746, DOI: 10.1016/j.radmeas.2004.01.012.
  • 71. Wacha L and Frechen M, 2011. The geochronology of the “Gorjanović loess section” in Vukovar, Croatia. Quaternary International 240(1–2): 87–99, DOI: 10.1016/J.QUAINT.2011.04.010.
  • 72. Wallinga J, Murray A and Duller G, 2000. Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating. Radiation Measurements 32(5–6): 691–695, DOI: 10.1016/S1350-4487(00)00127-X.
  • 73. Wilson CJ, Switsur VR and Ward AP, 1988. A new 14C age for the Oruanui (Wairakei) eruption, New Zealand. Geological Magazine 125(3): 296–300, DOI: 10.1017/S0016756800010232.
  • 74. Yang XH and McKeever SW, 1990. The pre-dose effect in crystalline quartz. Journal of Physics D 23(2): 237–244, DOI: 10.1088/0022-3727/23/2/017.
  • 75. Yates K, Fenton CH and Bell DH, 2018. A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury, South Island, New Zealand. Engineering Geology 236: 11–21, DOI: 10.1016/J.ENGGEO.2017.08.001.
  • 76. Yi S, Buylaert JP, Murray AS, Lu H, Thiel C and Zeng L, 2016. A detailed post-IR IRSL dating study of the Niuyangzigou loess site in northeastern China. Boreas 45(4): 644–657, DOI: 10.1111/BOR.12185.
  • 77. Yi S, Li X, Han Z, Lu H, Liu J and Wu J, 2018. High resolution luminescence chronology for Xiashu Loess deposits of Southern China. Journal of Asian Earth Sciences 155: 188–197, DOI: 10.1016/J.JSEAES.2017.11.027.
  • 78. Young DJ, 1964. Stratigraphy and petrography of North-East Otago Loess. New Zealand Journal of Geology and Geophysics 7(4): 839–863, DOI: 10.1080/00288306.1964.10428133.
  • 79. Zhang J, Rolf C, Wacha L, Tsukamoto S, Durn G and Frechen M, 2018. Luminescence dating and palaeomagnetic age constraint of a last glacial loess-paleosol sequence from Istria, Croatia. Quaternary International 494: 19–33, DOI: 10.1016/J.QUAINT.2018.05.045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-784017ab-973f-4ec1-a3a2-271fd5b0c8a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.