PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of variations of geometrical parameters on the notching stress intensity factors of cylindrical shells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modern approach of Virtual Engineering allows one to detect with some accuracy the residual life of components especially free of cracks. The life estimation becomes cumbersome when the components contain a crack. A straightforward formulation requires a parameter that considers geometrical constraints and materials properties. The magnitude of the stress singularity developed by the tip of a crack, needs to be expressed by the Stress Intensity Factors (SIF). In order to prove the validity of the results, calibration by experimental and/or analytical technique is required. To have a better understanding of this parameter, in the first part of this paper an analytical model to compute the SIF connected to crack propagation into Mode I has been implemented. The case study displays a pipeline component with a crack defect submitted to internal pressure. Therefore, an appropriate correlation between the analytical approach and numerical simulation has been established embedded.
Rocznik
Strony
559—569
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Équipe Science et Ingénierie des Matériaux (ESIM), Département de Physique Faculté des Sciences et Techniques Errachidia, Université My Ismaıl, Boutalamine, Errachidia, Morocco
  • Équipe Science et Ingénierie des Matériaux (ESIM), Département de Physique Faculté des Sciences et Techniques Errachidia, Université My Ismaıl, Boutalamine, Errachidia, Morocco
autor
  • Équipe Science et Ingénierie des Matériaux (ESIM), Département de Physique Faculté des Sciences et Techniques Errachidia, Université My Ismaıl, Boutalamine, Errachidia, Morocco
autor
  • School of Mechanical Engineering, University of Birmingham, United Kingdom
autor
  • School of Mechanical Engineering, University of Birmingham, United Kingdom
autor
  • LaBPS, Ecole Nationale d’Ingénieurs de Metz, Ile du Saulcy, Metz, France
Bibliografia
  • 1. Anderson P., 1999, Procedure for Safety Assessment of Component with Cracks, Handbook Swedish Nuclear Power Institute, Publication 99:49, SAQ/FOU Report 96/8. 3rd revised Ed.
  • 2. Anderson T.L., 1884, Fracture Mechanics Fundamentals and Application, Chapter 12, Boca Raton, FL: CRC Press
  • 3. ASME Boiler and Pressure Vessel Code, Section XI, 1981, Rules for in-service inspection of nuclear power plant components, American Soc. Mechanical Engineers, USA
  • 4. CASTEM, 2014, http://www-cast3m.cea.fr/
  • 5. Corigliano A., Maier G., Mariani S., 1999, Analysis of ductile fracture in damaged pipelines by a geometric parameter method, Engineering Structures, 21, 924-936
  • 6. Cravero S., Ruggieri C., 2005, Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens. Part I: Plane-strain analyses, Engineering Fracture Mechanics, 72, 1344-1360
  • 7. Darcis P.P., McCowan C.N., Windhoff H., McColskey J.D., Siewert T.A., 2008, Crack tip opening angle optical measurement methods in five pipeline steels, Engineering Fracture Mechanics, 75, 2453-2468
  • 8. Heliot J., Labbens R.C., Pellissier-Tanon A., 1997, Semi-elliptical cracks in a cylinder subjected to stress gradients, Fracture Mechanics, ASTM STP 677, 341-364
  • 9. Lee O.S., Choi S.S., 1999, Effect of circular cavity on maximum equivalent stress and stress intensity factor at a crack in buried pipeline, KSME International Journal, 13, 350 357
  • 10. McGowan J.J., Raymund M., 1997, Stress intensity factor solutions for internal longitudinal semi-elliptical surface flaws in a cylinder under arbitrary loading, Fracture Mechanics, ASTM STP 677, 365-380
  • 11. Moustabchir H., Pruncu C.I., Azari Z., Hariri S., Dmytrakh I., 2015, Fracture mechanics defect assessment diagram on pipe from steel P264GH with a notch, International Journal of Mechanics and Materials in Design, DOI 10.1007/s10999-015-9296-z
  • 12. Murtagian G.R., Johnson D.H., Ernst H.A., 2005, Dynamic crack propagation in steel line pipes. Part I: Experimental investigation, Engineering Fracture Mechanics, 72, 2519-2534
  • 13. Nordhagen H., Dumoulin S., Gruben G., 2014, Main properties governing the ductile fracture velocity in pipelines: a numerical study using an (artificial fluid)-structure interaction model, 20th European Conference on Fracture (ECF20), Procedia Materials Science, 3, 1650-1655
  • 14. Raju I.S., Newman Jr J.C., 1982, Stress intensity factors for internal and external surface cracks in cylindrical vessels, Journal of Press Vessel Technology, 104, 293-308
  • 15. Ruggieri C., Dotta F., 2011, Numerical modeling of ductile crack extension in high pressure pipelines with longitudinal flaws, Engineering Structures, 33, 1423-1438
  • 16. Scheider I., Nonn A., Volling A., Mondry A., Kalwa C. , 2014, A damage mechanics based evaluation of dynamic fracture resistance in gas pipelines, 20th European Conference on Fracture (ECF20), Procedia Materials Science, 3, 1956-1964
  • 17. Schoots K., Rivera-Tinoco R., Verbong G., Van der Zwaan B., 2011, Historical variation in the capital costs of natural gas, carbon dioxide and hydrogen pipelines and implications for future infrastructure, International Journal of Greenhouse Gas Control, 5, 1614-1623
  • 18. Shin C.S., Cai C.Q., 2004, Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending, International Journal of Fracture, 129, 239-264
  • 19. Staat M., Duc K.V., 2007, Limit analysis of flaws in pressurized pipes and cylindrical vessels. Part I: Axial defects, Engineering Fracture Mechanics, 74, 431-450
  • 20. Stonesifer R.B., Brust F.W., Leis B.N., 1992, Stress intensity factors for long axial outer surface cracks in large R/t pipes, Fracture Mechanics: Twenty-Second Symposium, ASTM STP 1131, 11, 29-45
  • 21. Su B., Bhuyan Gouri S., Elastic fracture properties of all-steel gas cylinders with different axial crack types, International Journal of Pressure Vessels and Piping, 76, 23-33
  • 22. Tada H., Paris P.C., Irwin G.R., 2000, Stress Analysis of Cracks Handbook, Third Edition, ASME Press
  • 23. Tan J.P., Tu S.T., Wang G.Z., Xuan F.Z., 2015, Characterization and correlation of 3-D creep constraint between axially cracked pipelines and test specimens, Engineering Fracture Mechanics
  • 24. You L.H., Ou H., Zheng Z.Y., 2007, Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure, Composite Structures, 78, 2285-2291
  • 25. Zahoor A., 1991, Ductile Fracture Handbook, Research project 1757-69, Vol. 3, Electric Power Research Institute
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-783e16a5-5c24-41bb-8e3e-c2eff6fbe72b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.