Identyfikatory
Warianty tytułu
Rhizosphere of metallophytes and its role in bioremediation of heavy metals
Języki publikacji
Abstrakty
Rośliny zdolne do wzrostu w obecności podwyższonych stężeń metali ciężkich nazywane są metalofitami, a niektóre z nich są zdolne do pobierania i akumulacji jonów metali. Ich ryzosfera stanowi unikalne środowisko, będące rezerwuarem wyspecjalizowanych bakterii metaloopornych. Mikroorganizmy te mogą wpływać na biodostępność jonów metali ciężkich oraz na wzrost i akumulację metali ciężkich przez metalofity. Dlatego rola ryzosfery i procesy w niej zachodzące, w kontekście fitoekstrakcji metali ciężkich, są bardzo ważne.
Plants that occur on heavy metal contaminated soils are called metallophytes. Some of them, known as hyperaccumulators, are able to accumulate heavy metal ions in their shoots and leaves. Rhizosphere of metallophytes encompasses an exceptional environment that involves numerous heavy metal resistant bacteria. Those rhizosphere microorganisms can alter heavy metal bioavailability, influencing their uptake and accumulation by plants. Due to this fact, rhizosphere processes that involve plant-microbe-heavy metal interactions are important for heavy metal phytoextration.
Czasopismo
Rocznik
Tom
Strony
554--559
Opis fizyczny
Bibliogr. 34 poz., tab.
Twórcy
autor
- Wydział Biologii i Ochrony Środowiska, Uniwersytet Śląski, Katowice
autor
- Wydział Biologii i Ochrony Środowiska, Uniwersytet Śląski, Katowice
Bibliografia
- 1. Lin H.: Three prinicples of soil change and pedogenesis in time and space. Soil Science Society of America Journal 2011, 75, 2049–2070.
- 2. Badri D.V., Weir T.L., Van der Lelie D. Vivanco J.M.: Rhizosphere chemical dialogues: Plant-microbe interactions. Current Opinion in Biotechnology 2009, 20, 642–650.
- 3. Alford É.R., Pilon-Smits E.A.H. and Paschke M.W.: Metallophytes – a view from the rhizosphere. Plant and Soil 2010, 337, 33–50.
- 4. Bais H.P., Weir T.L., Perry L.G., Gilroy S. and Vivanco J.M.: The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 2006, 57, 233–66.
- 5. Lugtenberg B.J.J., Kalinova F.: Plant growth promoting rhizobacteria. Annual Reviews of Microbiology 2009, 63, 541–556.
- 6. Vidali M.: Bioremediation. An overview. Pure and Applied Chemistry 2001, 73, 1163–1172.
- 7. Dermont G., Bergeron M., Mercier G., Richer-Laflèche M.: Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials 2008, 152, 1–31.
- 8. Wuana R.A., Okieimen F.E.: Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices Ecology 2011, 2011, 1–20.
- 9. Khan M.S., Zaidi A., Wani P.A., Oves M.: Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters 2009, 7, 1–19.
- 10. Becerra-Castro C., Monterroso C., Prieto-Fernández, Rodríguez-Lamas L., Loureiro-Viñas M., Acea M.J., Kidd P.S.: Pseudometallophytes colonising Pb/Zn mine tailings: A description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. Journal of Hazardous Materials 2012, 217–218, 350–359.
- 11. Van der Ent A., Baker A.J.M., Reeves R.D., Pollard A.J., Schat H.: Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 2013, 362, 319–334.
- 12. Wenzel W.W.: Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil 2009, 321, 385–408.
- 13. Ali H., Khan E., Sajad M.W.: Phytoremediation of heavymetals – concepts and applications. Chemosphere 2013, 91, 869–881.
- 14. Płociniczak T., Sinkkonen A., Romantschuk M., Piotrowska-Seget Z.: Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Applied Soil Ecology 2013, 63, 1–7.
- 15. Wu C.H., Wood T.K., Mulchandani A., Chen W.: Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Applied and Environmental Microbiology 2006, 72(2), 1129–1134.
- 16. Brunetti G., Farrag K., Rovira P.S., Nigro F., Senesi N.: Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma 2011, 16, 517–523.
- 17. Rieuwerts J.S., Thornton I., Farago M.E., Ashmore M.R.: Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability 1998, 10(2), 61–75.
- 18. Gadd G.M.: Microbial influence on metal mobility and application for bioremediation. Geoderma 2004, 122(2–4) 109–119.
- 19. Abou-Shanab R., Angel J.S., Delorme T.A., Chaney R.L., Van Berkum P., Moawad H., Ghanem K. and Ghozlan H.A.: Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytologist 2003, 158, 219–224.
- 20. Ma Y., Prasad M.N.V., Rajkumar M. and Freitas H.: Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances 2011, 29, 248–258.
- 21. Rajkumar M., Sandhya S., Prasad M.N.V., Freitas H.: Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances 2012, 30, 1562–1574.
- 22. Whiting S.N., De Souza M.P. and Terry N.: Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science and Technology 2001, 35, 3144–3150.
- 23. Alford É.R., Pilon-Smiths E.A.H., Fakra S.C., Paschke M.W.: Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis. American Journal of Botany 2012, 99(12), 1–12.
- 24. Dechamps C., Roosens N.H., Hotte C., Meerts P.: Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil. Plant and Soil 2005, 273, 327–335.
- 25. Zhuang X., Chen J., Shim H., Bai Z.: New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International 2007, 33, 406–413.
- 26. Li W.C., Ye Z.H., Wong M.H.: Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. Journal of Experimental Botany 2007, 58(15/16), 4173–4182.
- 27. Glick B.R., Cheng Z., Czarny Z., Duan J.: Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology 2007, 119, 329–339.
- 28. Idris R., Trifonova R., Puschenreiter M., Wenzel W.W., Sessitsch A.: Bacterial communities sssociated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology 2004, 70(5), 2667–2677.
- 29. Arshad M., Saleem M., Hussain S.: Perspectives of bacterial ACC deaminase in phytoremediation. Trends in Microbiology 2007, 25(8) 356–362.
- 30. Rodriguez H., Fraga R.: Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 1999, 17, 319–339.
- 31. Bonfante P., Anca I.A.: Plants, Mycorrhizal fungi, and bacteria: a network of interactions. Annual Reviews of Microbiology 2009, 63, 363–383.
- 32. Orłowska E., Przybyłowicz W., Orłowski D., Turnau K., Mesjasz-Przybyłowicz J.: The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environmental Pollution 2011, 159, 3730–3738.
- 33. Compant S., Clément C., Sessitsch A.: Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 2010, 42, 669–678.
- 34. Kuiper I., Lagendijk L., Bloemberg G.V., Lugtenberg B.J.J.: Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions 2004, 17(1), 6–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-783a12f5-ca0a-4491-987f-f12e98144876