PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity change of the modified carbon paste electrodes for detection of chlorinated phenoxyacetic acids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon paste electrode (CPE) was modified with F-300 commercial activated carbon or Norit SX- 2 powdered activated carbon. CPEs were prepared for detection of 2,4-dichlorophenoxyacetic acid (2,4-D), 2,6-dichlorophenoxyacetic acid (2,6-D) and 2,4,6-trichlorophenoxyacetic acid (2,4,6-T). The electrochemical behavior of these materials was investigated employing cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The modifier was found to enhance the electroactive surface area and the peak current in comparison to the bare (unmodified) carbon paste electrode. The intensity of the signal increased with the increase in adsorption ability of the modifiers. Compared to the unmodified electrode, all the new paste electrodes showed a much greater sensitivity for detection of chlorinated phenoxyacetic acids in water samples.
Rocznik
Strony
315--–325
Opis fizyczny
Bibliogr. 35 poz., tab., rys.
Twórcy
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol St., 03-236 Warsaw, Poland
  • Military University of Technology, Institute of Chemistry, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Chemistry, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Chemistry, 00-908 Warsaw, Poland
Bibliografia
  • 1. Abdel daiem M.M., Rivera-Utrilla J., Sánchez-Polo M., Ocampo-Pérez R., 2015. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides. Sci. Total Environ., 537, 335– 342. DOI: 10.1016/j.scitotenv.2015.07.131.
  • 2. Aksu Z., Kabasakal E., 2004. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep. Purif. Technol., 35, 223–240. DOI: 10.1016/S1383-5866(03)00144-8.
  • 3. Aulakh J.S., Malik A.K., Kaur V., Schmitt-Kopplin P., 2005. A review on solid phase micro extraction – high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Crit. Rev. Anal. Chem., 35, 71–85. DOI: 10.1080/10408340590947952.
  • 4. Barbosa P.F.P., Vieira E.G., Cumba L.R., Paim L.L., Nakamura A.P.R., Andrade R.D.A., do Carmo D.R., 2019. Voltammetric techniques for pesticides and herbicides detection – An overview. Int. J. Electrochem. Sci., 14, 3418–3433. DOI: 10.20964/2019.04.60.
  • 5. Białek A., Kuśmierek K., Świa˛tkowski A., 2016. Adsorption-desorption studies of herbicides on granular activated carbon. Przem. Chem., 95, 1842–1846. DOI: 10.15199/62.2016.9.37.
  • 6. Białek A., Kuśmierek K., Świa˛tkowski A., 2017. Adsorption and desorption of phenol, 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on activated carbons. Przem. Chem., 96, 2140–2144. DOI: 10.15199/62.2017.10.24.
  • 7. ChangP.L.,Hsieh,M.M.,ChiuT.C.,2016.Recentadvancesinthedeterminationofpesticidesinenvironmentalsamples by capillary electrophoresis. Int. J. Environ. Res. Public Health, 13, 409–429. DOI: 10.3390/ijerph13040409.
  • 8. Chen J., Sun S., Li C.Z., Zhu Y.G., Rosen B.P., 2014. Biosensor for organoarsenical herbicides and growth promoters. Environ. Sci. Technol., 482, 1141–1147. DOI: 10.1021/es4038319.
  • 9. Clegg B.S., Stephenson G.R., Hall J.C., 1999. Development of an enzyme-linked immunosorbent assay for the detection of glyphosate. J. Agric. Food Chem., 47, 5031–5037. DOI: 10.1021/jf990064x.
  • 10. Derylo-Marczewska A., Blachnio M., Marczewski A.W., Seczkowska M., Tarasiuk B., 2019. Phenoxyacid pesticide adsorption on activated carbon – Equilibrium and kinetics. Chemosphere, 214, 349–360. DOI: 10.1016/ j.chemosphere.2018.09.088.
  • 11. Doczekalska B, Kuśmierek K, Świa˛tkowski A, Bartkowiak M, J. 2018. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials. J. Environ. Sci. Health B, 53, 290–297. DOI: 10.1080/03601234.2017.1421840.
  • 12. Freundlich H.M.F., 1906. Über die Adsorption in Lösungen. Z. Phys. Chem., 57, 385–470.
  • 13. Hameed B.H., Salman J.M., Ahmad A.L., 2009. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater., 163, 121–126. DOI: 10.1016/j.jhazmat.2008.06.069.
  • 14. Kaminski W., Kusmierek K., Swiatkowski A., 2014. Sorption equilibrium prediction of competitive adsorption of herbicides 2,4-D and MCPA from aqueous solution on activated carbon using ANN. Adsorption, 20, 899–904. DOI: 10.1007/s10450-014-9633-9.
  • 15. Kim T.Y., Park S.S., Kim S.J., Cho S.Y., 2008. Separation characteristics of some phenoxy herbicides from aqueous solution. Adsorption, 14, 611–619. DOI: 10.1007/s10450-008-9129-6.
  • 16. Kuśmierek K., Sankowska M., Skrzypczyńska K., Świa˛tkowski A., 2015. The adsorptive properties of powdered carbon materials with a strongly differentiated porosity and their applications in electroanalysis and solid phase microextraction. J. Colloid. Interface Sci., 446, 91–97. DOI: 10.1016/j.jcis.2015.01.038.
  • 17. Kuśmierek K., Świa˛tkowski A., Skrzypczyńska K., Błażewicz S., Hryniewicz J., 2017. The effects of the thermal treatment of activated carbon on the phenols adsorption. Korean J. Chem. Eng., 34, 1081–1090. DOI: 10.1007/ s11814-017-0015-3.
  • 18. Langmuir I., 1916. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc., 38, 2221–2295. DOI: 10.1021/ja02268a002.
  • 19. Liu Y., Wang L.T., Zhou K., Eremin S.A, Huang X.A., Sun Y.M., Xu Z.L., Lei H.T, 2017. Rapid and homologous immunoassay for the detection of herbicide propisochlor in water. Food Agr. Immunol., 29, 67–83. DOI: 10.1080/ 09540105.2017.1359499.
  • 20. Matuszczyk G., Knopp D., Nießner R., 1996. Development of an ELISA for 2,4-D: characterization of two polyclonal antisera. Fresenius’ J. Anal. Chem., 354, 41–47. DOI: 10.1007/s002169600007.
  • 21. Moszczyński W., Białek A., 2011. Ecological production technology of phenoxyacetic herbicides MCPA and 2,4-D in the highest world standard. In: Hasaneen M.N. (Ed.), Herbicides. Properties, synthesis and control of weeds. Rijeka: IntechOpen.
  • 22. Moszczyński W.M., Białek A., Makieła E., Rippel B., 2008. Development of 2,4-D technology in Poland. Przem. Chem., 7, 7, 757–761.
  • 23. Njoku V.O., Hameed B.H., 2011. Preparation and characterization of activated carbon from corncob by chemical activationwithH3PO4 for2,4-dichlorophenoxyaceticacidadsorption.Chem.Eng.J.,173,391–399.DOI:10.1016/ j.cej.2011.07.075.
  • 24. Nollet L.M.L., Rathore H.S. (Eds.), 2010. Handbook of pesticides: Methods of pesticide residues analysis. Boca Raton: Taylor and Francis Group.
  • 25. Ocampo-Pérez R., Abdel daiem M.M., Rivera-Utrilla J., Méndez-Díaz J.D., Sánchez-Polo M.J., 2012. Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon. J. Colloid Interface Sci., 385, 174–182. DOI: 10.1016/j.jcis.2012.07.004.
  • 26. Özhan G., Özden S., Alpertunga B., 2005. Determination of commonly used herbicides in surface water using solid-phase extraction and dual-column HPLC-DAD. J. Environ. Sci. Heal. B, 40, 827–840. DOI: 10.1080/03601 230500227517.
  • 27. Ramachandran R., Mani V., Chen S.H., Gnana kumar G., Govindasamy M., 2015. Recent developments in electrode materials and methods for pesticide analysis – an overview. Int. J. Electrochem. Sci., 10, 859–869.
  • 28. Salman J.M., Hameed B.H., 2010. Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination, 256, 129–135. DOI: 10.1016/j.desal.2010.02.002.
  • 29. Shao C.Y., Howe C.J., Porter A.J.R., Glover L.A., 2002. Novel cyanobacterial biosensor for detection of herbicides. Appl. Environ. Microbiol., 68, 5026–5033. DOI: 10.1128/AEM.68.10.5026-5033.2002.
  • 30. Skrzypczyńska K., Kuśmierek K., Świa˛tkowski A., 2016. Carbon paste electrodes modified with various carbonaceous materials for the determination of 2,4-dichlorophenoxyacetic acid by differential pulse voltammetry. J. Electroanal. Chem., 766, 8–15. DOI: 10.1016/j.jelechem.2016.01.025.
  • 31. Smarzewska S., Jasińska A., Ciesielski W., Guziejewski D., 2017. First electroanalytical studies of profluralin with square wave voltammetry using glassy carbon electrode. Electroanalysis, 29, 244–248. DOI: 10.1002/elan.2016 00562.
  • 32. Stoytcheva M. (Ed.), 2011. Pesticides in the modern World – Trends in pesticides analysis. Rijeka: IntechOpen.
  • 33. Suárez R., Clavijo S., González A., Cerdà V., 2018. Determination of herbicides in environmental water samples by simultaneous in-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction and silylation followed by GC–MS. J. Sep. Sci., 41, 1096–1103. DOI: 10.1002/jssc.201700875.
  • 34. Tucci M., Grattieri M., Schievano A., Cristiani P., Minteer S.D., 2019. Microbial amperometric biosensor for online herbicide detection: Photocurrent inhibition of Anabaena variabilis. Electrochim. Acta, 302, 102–108. DOI: 10.1016/j.electacta.2019.02.007.
  • 35. Uthuppu B., Heiskanen A., Kofoed D., Aamand J., Jørgensen C., Dufva M., Jakobsen M.H., 2015. Micro-flowinjection analysis (µFIA) immunoassay of herbicide residue 2,6-dichlorobenzamide – towards automated at-line monitoring using modular microfluidics. Analyst, 140, 1616–1623. DOI: 10.1039/c4an01576b.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-783842f0-7e48-4b4d-acc8-c40515bf1de3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.