PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic detection for epileptic seizure using graph-regularized nonnegative matrix factorization and Bayesian linear discriminate analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Epilepsy is a neurological disorder characterized by excessive neuronal discharge which results in many problems in terms of behavior, state of mind, consciousness, and can threaten the lives of patients. An automatic epileptic seizure detection method with graph-regularized non-negative matrix factorization (GNMF) and Bayesian linear discriminate analysis (BLDA) is presented in this paper. First, discrete wavelet decomposition is applied to analyze raw electroencephalogram (EEG) signals, and the normalization based on differential operator is used to guarantee the nonnegative constraint and reinforce the distinction between seizure and non-seizure signals. Then, GNMF is employed to dimensionality reduction and feature extraction for EEG data, which could capture a parts-based representation of samples and obtain more discriminative features. The EEG features are calculated and entered into the BLDA classifier for categorized results. The public Freiburg EEG database is used to evaluate the performance of the proposed seizure detection method. The results showed event-based sensitivity of 95.24%, epoch-based sensitivity of 93.20%, and a false-alarm rate of 0.5/h. These results demonstrate the potential clinical value of this method for automatic seizure detection.
Twórcy
autor
  • School of Computer Science, Qufu Normal University, Rizhao, China
autor
  • School of Computer Science, Qufu Normal University, Rizhao, China
autor
  • School of Computer Science, Qufu Normal University, Rizhao, China
  • School of Computer Science, Qufu Normal University, Rizhao, China
autor
  • School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan, China
autor
  • School of Computer Science, Qufu Normal University, Rizhao, China
autor
  • School of Computer Science, Qufu Normal University, 80 Yantai North Road, Rizhao, PR China
Bibliografia
  • [1] Gandhi T, Panigrahi BK, Bhatia M, Anand S. Expert model for detection of epileptic activity in EEG signature. Expert Syst Appl 2010;37(4):3513–20. https://doi.org/10.1016/j.eswa.2009.10.036.
  • [2] Sharma P, Khan YU, Farooq O, Tripathi M, Adeli H. A wavelet-statistical features approach for nonconvulsive seizure detection. Clinical EEG and neuroscience 2014;45(4):274–84. https://doi.org/10.1177/1550059414535465.
  • [3] Nagaraj V, Lamperski A, Netoff TI. Seizure control in a computational model using a reinforcement learning stimulation paradigm. Int J Neural Syst 2017;27(07):1750012. https://doi.org/10.1142/S0129065717500125.
  • [4] Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, et al. The consequences of refractory epilepsy and its treatment. Epilepsy Behav: E&B 2014;37:59–70. https://doi.org/10.1016/j.yebeh.2014.05.031.
  • [5] Ahmadlou M, Adeli H. Functional community analysis of brain: A new approach for EEG-based investigation of the brain pathology. NeuroImage 2011;58(2):401–8. https://doi.org/10.1016/j.neuroimage.2011.04.070.
  • [6] Ahmadlou M, Adeli H. Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder. Clin EEG Neurosci 2011;42(1):6–13. https://doi.org/10.1177/155005941104200105.
  • [7] Liu Y-J, Yu M, Zhao G, Song J, Ge Y, Shi Y. Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Trans Affective Comput 2018;9(4):550–62. https://doi.org/10.1109/T-AFFC.516536910.1109/TAFFC.2017.2660485.
  • [8] Alarcao SM, Fonseca MJ. Emotions recognition using EEG signals: a survey. IEEE Trans Affective Comput 2019;10(3):374–93. https://doi.org/10.1109/T-AFFC.516536910.1109/TAFFC.2017.2714671.
  • [9] Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B, A review of classification algorithms for EEG-based brain–computer interfaces. 2007, 4, 24.
  • [10] Hassan AR, Subasi A. A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowl-Based Syst 2017;128:115–24. https://doi.org/10.1016/j.knosys.2017.05.005.
  • [11] An P, Yuan Z, Zhao J, Jiang X, Du Bo. An effective multi-model fusion method for EEG-based sleep stage classification. Knowl-Based Syst 2021;219:106890. https://doi.org/10.1016/j.knosys.2021.106890.
  • [12] Rizvi SA, Téllez Zenteno JF, Crawford SL, Wu A. Outpatient ambulatory EEG as an option for epilepsy surgery evaluation instead of inpatient EEG telemetry. Epilepsy Behav Case Reports 2013;1:39–41. https://doi.org/10.1016/j.ebcr.2013.01.001.
  • [13] Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015;26:56–64. https://doi.org/10.1016/j.seizure.2015.01.012.
  • [14] Ma D, Yuan S, Shang J, Liu J, Dai L, Kong X, et al. The automatic detection of seizure based on tensor distance and bayesian linear discriminant analysis. Int J Neural Syst 2021;31(05):2150006. https://doi.org/10.1142/S0129065721500064.
  • [15] Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Tran Information Technol Niomed 2009;13:703–10. https://doi.org/10.1109/titb.2009.2017939.
  • [16] Hassan AR, Siuly S, Zhang Y. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Programs Biomed 2016;137:247–59. https://doi.org/10.1016/j.cmpb.2016.09.008.
  • [17] Fu K, Qu J, Chai Y, Zou T. Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed Signal Process Control 2015;18:179–85. https://doi.org/10.1016/j.bspc.2015.01.002.
  • [18] Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A. Automatic feature extraction using genetic programming: An application to epileptic EEG classification. Expert Syst Appl 2011;38(8):10425–36. https://doi.org/10.1016/j.eswa.2011.02.118.
  • [19] Subasi A, EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications,2007,32,1084-1093.DOI: doi: 10.1016/j.eswa.2006.02.005.
  • [20] Yuan Qi, Zhou W, Xu F, Leng Y, Wei D. Epileptic EEG identification via LBP operators on wavelet coefficients. Int J Neural Syst 2018;28(08):1850010. https://doi.org/10.1142/S0129065718500107.
  • [21] Bandt C. A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure. Entropy 2017;19(5):197. https://doi.org/10.3390/e19050197.
  • [22] Adeli H, Ghosh-Dastidar S, Dadmehr N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Bio-med Eng 2007;54(2):205–11. https://doi.org/10.1109/TBME.2006.886855.
  • [23] Zhang Y, Zhou W, Yuan S. Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial EEG. Int J Neural Syst 2015;25(06):1550020. https://doi.org/10.1142/S0129065715500203.
  • [24] Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines. Expert Syst Appl 2012;39(1):202–9. https://doi.org/10.1016/j.eswa.2011.07.008.
  • [25] Wang D, Miao D, Xie CJESA, Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. 2011, 38, 14314-14320.
  • [26] Chiang H-S, Chen M-Y, Huang Y-J. Wavelet-based EEG processing for epilepsy detection using fuzzy entropy and associative petri net. IEEE Access 2019;7:103255–62. https://doi.org/10.1109/Access.628763910.1109/ACCESS.2019.2929266.
  • [27] Trung-Thanh L, Dao NT, Viet-Dung N, Linh-Trung N, abed-meraim K. Multi-channel EEG epileptic spike detection by a new method of tensor decomposition. J Neural Eng 2020;17. https://doi.org/10.1088/1741-2552/ab5247 016023.
  • [28] Yuan S, Liu J-X, Shang J, Xu F, Dai L, Kong X, Automatic Seizure Prediction based on Modified Stockwell Transform and Tensor Decomposition. 2020. 1503-1509.
  • [29] Li Y, Liu Y, Cui W-G, Huang H, Hu Z-Y. Epileptic seizure detection in EEG signals using a unified temporal-spectral squeezeand-excitation network. IEEE Trans Neural Systems Rehabilitation Eng 2020;28(4):782–94. https://doi.org/10.1109/TNSRE.733310.1109/TNSRE.2020.2973434.
  • [30] Ansari AH, Cherian PJ, Caicedo A, Naulaers G, De Vos M, Van Huffel S. Neonatal seizure detection using deep convolutional neural networks. Int J Neural Syst 2019;29(04):1850011. https://doi.org/10.1142/S0129065718500119.
  • [31] Ma X, Yu N, Zhou W. Using dictionary pair learning for seizure detection. Int J Neural Systems 2019;29(04):1850005. https://doi.org/10.1142/S0129065718500053.
  • [32] Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalance ddata. Pattern Recognition 2007;40(12):3358–78. https://doi.org/10.1016/j.patcog.2007.04.009.
  • [33] Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 2003;43:1947–58. https://doi.org/10.1021/ci034160g.
  • [34] Yuan Q, Zhou W, Zhang L, Zhang F, Xu F, Leng Y, et al. Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure 2017;50:99–108. https://doi.org/10.1016/j.seizure.2017.05.018.
  • [35] Ceylan R, Özbay Y. Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network. Expert Syst Appl 2007;33(2):286–95. https://doi.org/10.1016/j.eswa.2006.05.014.
  • [36] Cui G, Li X, Dong Y. Subspace clustering guided convex nonnegative matrix factorization. Neurocomputing 2018;292:38–48. https://doi.org/10.1016/j.neucom.2018.02.067.
  • [37] Li SZ, Xin Wen H, Hong Jiang Z, Qian Sheng C. Learning spatially localized, parts-based representation. in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. 2001.
  • [38] Li R, Yang G, Wang K, Huang Y, Yuan F, Yin Y. Robust ECG biometrics using GNMF and sparse representation. Pattern Recogn Lett 2020;129:70–6. https://doi.org/10.1016/j.patrec.2019.11.005.
  • [39] Cai D, He X, Han J, Huang TS. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 2011;33:1548–60. https://doi.org/10.1109/TPAMI.2010.231.
  • [40] Zhang L, Liu Z, Pu J, Song B. Adaptive graph regularized nonnegative matrix factorization for data representation. Appl Intelligence 2020;50(2):438–47. https://doi.org/10.1007/s10489-019-01539-9.
  • [41] Jin J, Allison BZ, Brunner C, Wang B, Wang X, Zhang J, Neuper C, Pfurtscheller G, P300 Chinese input system based on Bayesian LDA. Biomedizinische Technik. Biomedical engineering, 2010, 55, 5-18. doi: 10.1515/bmt.2010.003.
  • [42] Lei X, Yang P, Yao D. An Empirical Bayesian Framework for Brain-Computer Interfaces. IEEE Trans Neural Syst Rehabil Eng 2009;17(6):521–9. https://doi.org/10.1109/TNSRE.733310.1109/TNSRE.2009.2027705.
  • [43] Zhou W, Liu Y, Yuan Q, Li X. Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans Biomed Eng 2013;60(12):3375–81. https://doi.org/10.1109/TBME.2013.2254486.
  • [44] Gajic D, Djurovic Z, Gligorijevic J, Di Gennaro S, Savic-Gajic I, Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis. Frontiers in computational neuroscience, 2015. 9, 38. doi: 10.3389/fncom.2015.00038.
  • [45] Stanley Raj A, Hudson Oliver D, Srinivas Y, Viswanath J. Wavelet denoising algorithm to refine noisy geoelectrical data for versatile inversion. Modeling Earth Systems Environ 2016;2:36. https://doi.org/10.1007/s40808-016-0091-0.
  • [46] Grewal S, Gotman J, An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clinical Neurophysiology,2005,116,2460-2472. doi: 10.1016/j.clinph.2005.05.020.
  • [47] Yu Z, Zhou W, Zhang F, Xu F, Yuan S, Leng Y, et al. Automatic seizure detection based on kernel robust probabilistic collaborative representation. Med Biol Eng Compu 2019;57(1):205–19. https://doi.org/10.1007/s11517-018-1881-5.
  • [48] Yuan S, ZhouW, Li J,Wu Q. Sparse representation-based EMD and BLDA for automatic seizure detection. Med Biol Eng Comput 2017;55(8):1227–38. https://doi.org/10.1007/s11517-016-1587-5.
  • [49] Lee D, Seung H. Algorithms for non-negative matrix factorization. Adv Neural Inform Process Syst 2001;13.
  • [50] Zhu R, Liu J-X, Zhang Y-K, Guo Y, A robust manifold graph regularized nonnegative matrix factorization algorithm for cancer gene clustering. Molecules (Basel, Switzerland), 2017. 22, doi: 10.3390/molecules22122131.
  • [51] Yuan S, Zhou W, Yuan Q, Zhang Y, Meng Q. Automatic seizure detection using diffusion distance and BLDA in intracranial EEG. Epilepsy Behav 2014;31:339–45. https://doi.org/10.1016/j.yebeh.2013.10.005.
  • [52] Yuan S, Zhou W, Yuan Q, Li X, Wu Q, Zhao X, Wang J, Kernel Collaborative Representation-Based Automatic Seizure Detection in Intracranial EEG. 2015, 25, 1550003. doi: 10.1142/s0129065715500033.
  • [53] Liu Y, Zhou W, Yuan Q, Chen S. Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2012;20(6):749–55. https://doi.org/10.1109/TNSRE.733310.1109/TNSRE.2012.2206054.
  • [54] Yan A, Zhou W, Yuan Q, Yuan S, Wu Q, Zhao X, Wang J, et al. Automatic seizure detection using Stockwell transform and boosting algorithm for long-term EEG. Epilepsy Behav 2015;45:8–14. https://doi.org/10.1016/j.yebeh.2015.02.012.
  • [55] Bajaj V, Pachori RB. Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomed Eng Lett 2013;3(1):17–21. https://doi.org/10.1007/s13534-013-0084-0.
  • [56] Mahmoodian N, Boese A, Friebe M, Haddadnia J. Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure 2019;66:4–11. https://doi.org/10.1016/j.seizure.2019.02.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7835dd9d-9b73-465e-9f64-77a62be7f93a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.