PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Analysis of Turbulent Heat Fluxes and the Energy Balance During the REFLEX Campaign

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three eddy covariance stations were installed at the Barrax experimental farm during the Land-Atmosphere Exchanges (REFLEX) airborne training and measurement campaign to provide ground truth data of energy balance fluxes and vertical temperature and wind profiles. The energy balance closure ratio (EBR) was 105% for a homogeneous camelina site, 86% at a sparse reforestation site, and 73% for a vineyard. We hypothesize that the lower closure in the last site was related to the limited fetch. Incorporating a vertical gradient of soil thermal properties decreased the RMSE of the energy balance at the camelina site by 16 W m-2. At the camelina site, eddy covariance estimates of sensible and latent heat fluxes could be reproduced well using mean vertical profiles of wind and temperature, provided that the Monin-Obukhov length is known. Measured surface temperature and sensible heat fluxes suggested high excess resistance for heat (kB-1 = 17).
Czasopismo
Rocznik
Strony
1516--1539
Opis fizyczny
Bibliogr. 33 poz., tab., rys., wykr.
Twórcy
  • Department of Water Resources, Faculty ITC, University of Twente, Enschede, The Netherlands
  • Department of Water Resources, Faculty ITC, University of Twente, Enschede, The Netherlands
autor
  • Department of Hydraulic, Environmental and Surveying Engineering, Politecnico di Milano, Milano, Italy
autor
  • CEAM, Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterraneo, Paterna, Spain
  • Department of Water Resources, Faculty ITC, University of Twente, Enschede, The Netherlands
autor
  • CEAM, Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterraneo, Paterna, Spain
Bibliografia
  • [1] Bowen, I.S. (1926), The ratio of heat losses by conduction and by evaporation from any water surface, Phys. Rev. 27, 6, 779-787, DOI: 10.1103/PhysRev.27. 779.
  • [2] Cleugh, H.A., R. Leuning, Q. Mu, and S.W. Running (2007), Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ. 106, 3, 285-304, DOI: 10.1016/j.rse.2006.07.007.
  • [3] Corbari, C., D. Masseroni, and M. Mancini (2012), Effetto delle correzioni dei dati misurati da stazioni eddy covariance sulla stima dei flussi evapotraspirativi, Ital. J. Agrometeorol. 1, 35-51 (in Italian).
  • [4] de Vries, D.A. (1963), Thermal properties of soils. In: W.R. van Wijk (ed.), Physics of Plant Environment, North-Holland Publ. Co., Amsterdam.
  • [5] Detto, M., N. Montaldo, J.D. Albertson, M. Mancini, and G. Katul (2006), Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy, Water Resour. Res. 42, 8, W08419, DOI: 10.1029/2005WR004693.
  • [6] Dyer, A.J. (1974), A review of flux-profile relationships, Bound.-Lay. Meteorol. 7, 3, 363-372, DOI: 10.1007/BF00240838.
  • [7] Eder, F., M. Schmidt, T. Damian, K. Träumner, and M. Mauder (2015), Mesoscale eddies affect near-surface turbulent exchange: evidence from lidar and tower measurements, J. Appl. Meteorol. Clim. 54, 1, 189-206, DOI: 10.1175/JAMC-D-14-0140.1.
  • [8] Foken, T. (2008), The energy balance closure problem: An overview, Ecol. Appl. 18, 6, 1351-1367, DOI: 10.1890/06-0922.1.
  • [9] Foken, T., M. Göckede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger (2005), Post-field data quality control. In: X. Lee, W. Massman, and B. Law (eds.), Handbook of Micrometeorology, Atmospheric and Oceanographic Sciences Library, Vol. 29, Springer Netherlands, 181-208, DOI: 10.1007/1-4020-2265-4_9.
  • [10] Frank, J.M., W.J. Massman, and B.E. Ewers (2013), Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers, Agr. Forest Meteorol. 171-172, 72-81, DOI: 10.1016/ j.agrformet.2012.11.005.
  • [11] Gash, J.H.C. (1987), An analytical framework for extrapolating evaporation measurements by remote sensing surface temperature, Int. J. Remote Sens. 8, 8, 1245-1249, DOI: 10.1080/01431168708954769.
  • [12] Gökmen, M., Z. Vekerdy, A. Verhoef, W. Verhoef, O. Batelaan, and C. van der Tol (2012), Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions, Remote Sens. Environ. 121, 261-274, DOI: 10.1016/j.rse.2012.02.003.
  • [13] Hsieh, C.I., G. Katul, and T.W. Chi (2000), An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows, Adv. Water Res. 23, 7, 765-772, DOI: 10.1016/S0309-1708(99) 00042-1.
  • [14] Horst, T.W. (1997), A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors, Bound.-Lay. Meteorol. 82, 2, 219-233, DOI: 10.1023/A:1000229130034.
  • [15] Kalma, J.D., T.R. McVicar, and M.F. McCabe (2008), Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surv. Geophys. 29, 4-5, 421-469, DOI: 10.1007/s10712-008-9037-z.
  • [16] Kustas, W.P., and J.M. Norman (1996), Use of remote sensing for evapotranspiration monitoring over land surfaces, Hydrol. Sci. J. 41, 4, 495-516, DOI: 10.1080/02626669609491522.
  • [17] Kustas, W.P., K.S. Humes, J.M. Norman, and M.S. Moran (1996), Single- and dualsource modeling of surface energy fluxes with radiometric surface temperature, J. Appl. Meteorol. Clim. 35, 1, 110-121, DOI: 10.1175/1520-0450(1996)035<0110:SADSMO>2.0.CO;2.
  • [18] Liebethal, C., B. Huwe, and T. Foken (2005), Sensitivity analysis for two ground heat flux calculation approaches, Agr. Forest Meteorol. 132, 3-4, 253-262, DOI: 10.1016/j.agrformet.2005.08.001.
  • [19] Massman, W.J. (1999), A model study of kBH −1 for vegetated surfaces using ‘localized near-field’ Lagrangian theory, J. Hydrol. 223, 1-2, 27-43, DOI: 10.1016/S0022-1694(99)00104-3.
  • [20] Owen, P.R., and W.R. Thomson (1963), Heat transfer across rough surfaces, J. Fluid Mech. 15, 3, 321-334, DOI: 10.1017/S0022112063000288.
  • [21] Paulson, C.A. (1970), The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteorol.Clim. 9, 6, 857-861, DOI: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.
  • [22] Raupach, M.R. (1994), Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Bound.-Lay. Meteorol. 71, 1-2, 211-216, DOI: 10.1007/BF00709229.
  • [23] Schotanus, P., F.T.M. Nieuwstadt, and H.A.R. de Bruin (1983), Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes, Bound.-Lay. Meteorol. 26, 1, 81-93, DOI: 10.1007/BF00164332.
  • [24] Stewart, J.B., W.P. Kustas, K.S. Humes, W.D. Nichols, M.S. Moran, and H.A.R. de Bruin (1994), Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas, J. Appl. Meteorol. Clim. 33, 9, 1110-1117, DOI: 10.1175/1520-0450(1994)033<1110:SHFRST>2.0.CO;2.
  • [25] Su, Z., T. Schmugge, W.P. Kustas, and W.J. Massman (2001), An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere, J. Appl. Meteorol. Clim. 40, 11, 1933-1951, DOI: 10.1175/1520-0450(2001)040<1933:AEOTMF>2.0.CO;2.
  • [26] Su, Z., W. Timmermans, A. Gieske, L. Jia, J.A. Elbers, A. Olioso, J. Timmermans, R. van der Velde, X. Jin, H. van der Kwast, F. Nerry, D. Sabol, J.A. Sobrino, J. Moreno, and R. Bianchi (2008), Quantification of land- atmosphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax site, Int. J. Remote Sens. 29, 17-18, 5215-5235, DOI: 10.1080/01431160802326099.
  • [27] Timmermans, W.J., G. Bertoldi, J.D. Albertson, A. Olioso, Z. Su, and A.S.M. Gieske (2008), Accounting for atmospheric boundary layer variability on flux estimation from RS observations, Int. J. Remote Sens. 29, 17-18, 5275-5290, DOI: 10.1080/01431160802036383.
  • [28] Timmermans, W.J., C. van der Tol, J. Timmermans, M. Ucer, X. Chen, L. Alonso, J. Moreno, A. Carrara, R. Lopez, F. de la Cruz Tercero, H.L. Corcoles, E. de Miguel, J.A.G. Sanchez, I. Pérez, B. Franch, J.-C.J. Munoz, D. Skokovic, J. Sobrino, G. Soria, A. MacArthur, L. Vescovo, I. Reusen, A. Andreu, A. Burkart, C. Cilia, S. Contreras, C. Corbari, J.F. Calleja, R. Guzinski, C. Hellmann, I. Herrmann, G. Kerr, A.-L. Lazar, B. Leutner, G. Mendiguren, S. Nasilowska, H. Nieto, J. Pachego-Labrador, S. Pulanekar, R. Raj, A. Schikling, B. Siegmann, S. von Bueren, and Z.B. Su (2015), An overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) campaign, Acta Geophys. 63, 6, 1465-1484, DOI: 10.2478/s11600-014-0254-1 (this issue).
  • [29] van der Tol, C. (2012), Validation of remote sensing of bare soil ground heat flux, Remote Sens. Environ. 121, 275-286, DOI: 10.1016/j.rse.2012.02.009.
  • [30] Verhoef, A., H.A.R. de Bruin, and B.J.J.M. van den Hurk (1997), Some practical notes on the parameter kB-1 for sparse vegetation, J. Appl. Meteorol. Clim. 36, 5, 560-572, DOI: 10.1175/1520-0450(1997)036<0560:SPNOTP>2.0.CO;2.
  • [31] Webb, E.K., G.I. Pearman, and R. Leuning (1980), Correction of flux measurements for density effects due to heat and water vapour transfer, Quart. J. Roy. Meteorol. Soc. 106, 447, 85-100, DOI: 10.1002/qj.49710644707.
  • [32] Wilson, K., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. Ibrom, B.E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, R. Valentini, and S. Verma (2002), Energy balance closure at FLUXNET sites, Agr. Forest Meteorol. 113, 1-4, 223-243, DOI: 10.1016/ S0168-1923(02)00109-0.
  • [33] Yang, K., T. Koike, and D. Yang (2003), Surface flux parameterization in the Tibetan Plateau, Bound.-Lay. Meteorol. 106, 2, 245-262, DOI: 10.1023/ A:1021152407334.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-782f0aab-e639-417f-b161-bea24be798e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.