PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-dependent seismic hazard in Bobrek coal mine, Poland, assuming different magnitude distribution estimations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to evaluate seismic hazard parameters in connection with the evolution of mining operations and seismic activity. The time-dependent hazard parameters to be estimated are activity rate, Gutenberg–Richter b-value, mean return period and exceedance probability of a prescribed magnitude for selected time windows related with the advance of the mining front. Four magnitude distribution estimation methods are applied and the results obtained from each one are compared with each other. Those approaches are maximum likelihood using the unbounded and upper bounded Gutenberg–Richter law and the non-parametric unbounded and non-parametric upper-bounded kernel estimation of magnitude distribution. The method is applied for seismicity occurred in the longwall mining of panel 3 in coal seam 503 in Bobrek colliery in Upper Silesia Coal Basin, Poland, during 2009–2010. Applications are performed in the recently established Web-Platform for Anthropogenic Seismicity Research, available at https://tcs.ah-epos.eu/
Czasopismo
Rocznik
Strony
493--505
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Aki K (1965) Maximum likelihood estimate of b in the formula logN = a − bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239
  • 2. Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831–851
  • 3. Bowman AW, Hall P, Titterington DM (1984) Cross-validation in non-parametric estimation of probabilities and probability densities. Biometrika 71:341–351
  • 4. Convertito V, Maercklin N, Sharma N, Zollo A (2012) From induced seismicity to time-dependent seismic hazard. Bull Seismol Soc Am 102:2563–2573
  • 5. Cornell AC (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606
  • 6. Davis R, Foulger G, Bindley A, Styles P (2013) Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar Petrol Geol 45:171–185
  • 7. Fritschen R (2010) Mining-induced seismicity in the Saarland, Germany. Pure Appl Geophys 167:77–89
  • 8. Gibowicz S (2009) Seismicity induced by mining: recent research. Adv Geophys 51:1–53
  • 9. Gibowicz SJ, Kijko A (1994) An introduction to mining seismology. Academic Press, San Diego
  • 10. Gibowicz SJ, Lasocki S (2001) Seismicity induced by mining: ten years later. Adv Geophys 44:39–181
  • 11. Kijko A (2004) Estimation of the maximum earthquake magnitude, mmax. Pure Appl Geophys 161:1655–1681. doi:10.1007/s00024-004-2531-4
  • 12. Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654
  • 13. Kijko A, Drzezla B, Stankiewicz T (1987) Bimodal character of the distribution of extreme seismic events in Polish mines. Acta Geophys Pol 35:157–166
  • 14. Kijko A, Lasocki S, Graham G (2001) Nonparametric seismic hazard analysis in mines. Pure Appl Geophys 158:1655–1676
  • 15. Kozłowska M (2013) Analysis of spatial distribution of mining tremors occurring in rudna copper mine (Poland). Acta Geophys 61:1156–1169
  • 16. Kozłowska M, Orlecka-Sikora B, Rudziński Ł, Cielesta S, Mutke G (2016) Atypical evolution of seismicity patterns resulting from the coupled natural, human-induced and coseismic stresses in a longwall coal mining environment. Int J Rock Mech Min Sci 68:5–15
  • 17. Lasocki S (2001) Quantitative evidences of complexity of magnitude distribution in mining-induced seismicity: Implications for hazard evaluation. In: van Aswegen G, Durrheim RJ, Ortlepp WD (eds), Proceedings of the fifth international symposium on rockbursts and seismicity in mines (RaSiM 5) ‘Dynamic rock mass response to mining’. South African Institute of Mining and Metallurgy, Johannesburg, 543–550
  • 18. Lasocki S, Orlecka-Sikora B (2008) Seismic hazard assessment under complex source size distribution of mining-induced seismicity. Tectonophysics 456:28–37
  • 19. Lasocki S, Papadimitriou EE (2006) Magnitude distribution complexity revealed from seismicity in Greece. J Geophys Res. doi:10.1029/2005JB003794
  • 20. Lasocki S, Urban P (2011) Bias, variance and computational properties of Kijko’s estimators of the upper limit of magnitude distribution, Mmax. Acta Geophys 59:659–673
  • 21. Li T, Cai MF, Cai M (2007) A review of mining-induced seismicity in China. Int J Rock Mech Min 44:1149–1171
  • 22. Maghsoudi S, Hainzl S, Cesca S, Dahm T, Kaiser D (2014) Identification and characterization of growing large-scale en-echelon fractures in a salt mine. Geophys J Int 196:1092–1105. doi:10.1093/gji/ggt443
  • 23. Marcak H, Mutke G (2013) Seismic activation of tectonic stresses by mining. J Seismol 17:1139–1148
  • 24. Mutke G, Pierzyna A, Barański A (2016) b-Value as a criterion for the evaluation of rockburst hazard in coal mines. In: Mitri HS, Shnorhokian S, Kumral MK, Sasmito A, Sainoki A (eds), Proceedings of 3rd international symposium on mine safety, science and engineering, August 13–19 2016, Montreal, Canada, 1–5
  • 25. Naoi M, Nakatani M, Horiuchi S, Yabe Y, Philipp J, Kgarume T, Morema G, Khambule S, Masakale T, Ribeiro L, Miyakawa K, Watanabe A, Otsuki K, Moriya H, Murakami O, Kawakata H, Yoshimitsu N, Ward A, Durrheim R, Ogasawara H (2014) Frequency-magnitude distribution of −3.7 ≤ M W ≤ 1 mining-induced earthquakes around a mining front and b value invariance with post-blast time. Pure Appl Geophys 171:2665–2684. doi:10.1007/s00024-013-0721-7
  • 26. Page R (1968) Aftershocks and microaftershocks. Bull Seismol Soc Am 58:1131–1168
  • 27. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076
  • 28. Robson DS, Whitlock JH (1964) Estimation of a truncation point. Biometrika 51(1–2):33–39. doi:10.1093/biomet/51.1-2.33
  • 29. Scholz C (1968) The frequency-magnitude relation of microfractiring in rock and its relation to earthquakes. Bull Seism Soc Am 58:399–415
  • 30. Silverman BW (1986) Density estimation for statistic and data analysis. Chapman and Hall, London, p 175
  • 31. Stec K (2007) Characteristics of seismic activity of the Upper Silesian Coal Basin in Poland. Geophys J Int 168(2):757–768
  • 32. Trifu CI, Urbancic TI, Young RP (1993) Non-similar frequency-magnitude distribution for m < 1 seismicity. Geophys Res Lett 20:427–430
  • 33. Urban P, Lasocki S, Blascheck P, do Nascimento AF, Giang NV, Kwiatek G (2016) Violations of Gutenberg–Richter in anthropogenic seismicity. Pure Appl Geophys 173:1517–1537
  • 34. Utsu T (1966) A statistical significance test of the difference in b-value between two earthquake groups. J Phys Earth 14:37–40
  • 35. Utsu T (1999) Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure Appl Geophys 155:509–535
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-782d1bc3-0a2a-4bfd-954c-eb36e23a4b52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.