PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MWCNTs-Pt versus MWCNTs-Re nanocomposites manufacturing method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The primary aim of the article is to compare fabrication methods and present newly fabricated MWCNTs-NPs nanocomposites whose structural components are carbon nanotubes and platinum and rhenium nanoparticles. Design/methodology/approach: The newly fabricated nanocomposites underwent STEM examinations in the bright and dark to show their structure. Raman spectroscopy examinations were carried out, as well, to confirm changes in the structure of carbon nanotubes subject to the experiments. Findings: It was found based on a comparative analysis of the structure of MWCNTs-Pt and MWCNTs-Re nanocomposites that functionalisation methods and a reduction method of precursors of selected noble elements have a significant effect on the structure and morphology of the compared carbon nanocomposites. Practical implications: Nanocomposites consisting of carbon nanotubes decorated with metal nanoparticles, including Pt and Re, possess special electrical properties and a developed specific area, which makes them particularly suitable as active elements of industrial gas sensors. The materials can also be used as biosensors and catalysts in the future. Originality/value: A comparative analysis of the following author’s methods: (i) fabrication of MWCNTs-Pt nanocomposite, which was given numerous awards at international innovation and invention exhibitions and (ii) fabrication of MWCNTs-Re nanocomposite pending patent protection.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
  • [2] P.M. Ajayan, Nanotubes from carbon, Chemical Reviews 99/7 (1999) 1787-1799.
  • [3] B.I. Yakobson, C.J. Brabec, J. Bernholc, Nano-mechanics of carbon tubes: instabilities beyond linear response, Physical Review Letters 76/14 (1996) 2511-2514.
  • [4] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes, Nature 382 (1996) 54-56.
  • [5] B.J. Yakobson, R.E.Smalley, Des materiaux pour le troisieme millenaire, La Recherche 307 (1998) 50-56.
  • [6] C. Journet, P. Bernier, Production of carbon nanotubes, Applied Physics A Materials Science & Processing 67 (1998) 1-9.
  • [7] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, Journal of Materials Chemistry 17 (2007) 2679-2694.
  • [8] X. Peng, J. Chen, J.A. Misewich, S.S. Wong, Carbon nanotube-nanocrystal heterostructures, Chemical Society Reviews 38/4 (2009) 1076-1098.
  • [9] G.G. Wildgoose, C.E. Banks, R.G. Compton, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes, Methods and Applications 2/2 (2006) 182-193.
  • [10] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Carbon nanotubes decorating methods, Archives of Materials Science and Engineering 61/2 (2013) 53-61.
  • [11] A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley, Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 388 (1997) 257-259.
  • [12] R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley, Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br, Nature 388 (1997) 255-257.
  • [13] A. Jorio, M.S. Dresselhaus, G. Dresselhaus (eds.), Carbon Nanotubes. Advanced Topics in the Synthesis, Structure, Properties and Applications, Topics in Applied Physics 111, Springer-Verlag, Berlin Heidelberg, 2008.
  • [14] A. Star, V. Joshi, S. Skarupo, D. Thomas, J.-Ch.P Gabriel, Gas sensor array based on metal-decorated carbon nanotubes, Journal of Physical Chemistry B 110/42 (2006) 21014-21020.
  • [15] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, M. Pawlyta, T. Gaweł, M. Procek, Resistance changes of carbon nanotubes decorated with platinum nanoparticles in the presence of hydrogen at different and constant concentrations, Physica Status Solidi B (in print).
  • [16] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, Synthesis and characterisation of Pt/MWCNTs nanocomposites, Physica Status Solidi B 250/12 (2013) 2569-2574.
  • [17] A.D. Dobrzańska-Danikiewicz, M. Pawlyta, D.Łukowiec, A structure and morphology of nanocomposites composed of carbon nanotubes with a varying fraction of platinum nanoparticles, Advanced Materials Research (in print).
  • [18] A.D. Dobrzańska-Danikiewicz, M. Pawlyta, D.Łukowiec, Structure of nanocomposite based on carbon nanotubes decorated with platinum nanoparticles, Materials Science Forum (in print).
  • [19] A.D. Dobrzańska-Danikiewicz, W. Wolany, G. Benke, Z. Rdzawski, The new MWCNTs–rhenium nanocomposite, Physica Status Solidi B (in print).
  • [20] K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, Progress in the synthesis of carbon nanotube - and nanofiber - supported Pt electrocatalysts for PEM fuel cell catalysis, Journal of Applied Electrochemistry 36 (2006) 507-522.
  • [21] Y. Xing, Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes, Journal of Physical Chemistry B 108 (2004) 19255-19259.
  • [22] K.E. Gonsalves, C.R. Halberstadt, C.T. Laurencin, L.S. Nair (eds.), Biomedical Nanostructures, John Wiley & Sons, Inc., New Jersey, 2008
  • [23] H. Ra, T.W. Ebbesen, K. Tanigaki, Opening and purification of carbon nanotubes in high yields, Advanced Materials 7/3 (1995) 275-276.
  • [24] K.J. Ziegler, Z. Gu, H. Peng, E.L. Flor, R.H. Hauge, R.E. Smalley, Controlled oxidative cutting of single-walled carbon nanotubes, Journal of the American Chemical Society 127 (2005) 1541-1547.
  • [25] C.G. Salzmann, S.A. Llewellyn, G. Tobias, M.A.H. Ward, Y. Huh, M.L.H. Green, The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material, Advanced Materials 19 (2007) 883-887.
  • [26] V. Shanov, Y.H.Yun, M. J. Schulz, Synthesis and characterization of carbon nanotube materials (review), Journal of the University of Chemical Technology and Metallurgy 41/4 (2006) 377-390.
  • [27] J.W. Seo, E. Couteau, P. Umek, K. Hernadi, P. Marcoux, B. Lukiü, C. Mikó, M. Milas, R. Gaăl, L. Forró, Synthesis and manipulation of carbon Nanotubes, New Journal of Physics 5 (2003) 120.1-120.22.
  • [28] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of Carbon Nanotubes, Chemical Review 106 (2006) 1105-1136.
  • [29] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsisc, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon 46 (2008) 833-840.
  • [30] S. Panchakarla, A. Govindaraj, Covalent and non-covalent functionalization and solubilization of double-walled carbon nanotubes in nonpolar and aqueous media, Journal of Chemical Sciences 20/6 (2008) 607-611.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7829f624-b75e-4dc7-b6e3-59cc0ded778f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.