Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Discontinuous coefficients in the Poisson equation lead to the weak discontinuity in the solution, e.g. the gradient in the field quantity exhibits a rapid change across an interface. In the real world, discontinuities are frequently found (cracks, material interfaces, voids, phase-change phenomena) and their mathematical model can be represented by Poisson type equation. In this study, the extended finite element method (XFEM) is used to solve the formulated discontinuous problem. The XFEM solution introduce the discontinuity through nodal enrichment function, and controls it by additional degrees of freedom. This allows one to make the finite element mesh independent of discontinuity location. The quality of the solution depends mainly on the assumed enrichment basis functions. In the paper, a new set of enrichments are proposed in the solution of the Poisson equation with discontinuous coefficients. The global and local error estimates are used in order to assess the quality of the solution. The stability of the solution is investigated using the condition number of the stiffness matrix. The solutions obtained with standard and new enrichment functions are compared and discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
123--144
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Kielce University of Technology, Faculty of Management and Computer Modelling, Al. Tysiąclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
- [1] T.P. Fries and H.G. Matthies. Classification and overview of meshfree methods. Informatikbericht Nr.: 2003-3. Technical University Braunschweig, Brunswick, Germany, 2004.
- [2] M.A. Schweitzer. Meshfree and generalized finite element methods. Postdoctoral dissertation. Mathematisch–Naturwissenschaftlichen Fakultat der Rheinischen Friedrich- -Wilhelms--Universitat, Bonn, Germany, 2008.
- [3] Vinh Phu Nguyen, C. Anitescu, S. Bordas, and T. Rabczuk. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation, 117:89–116, 2015. doi: 10.1016/j.matcom.2015.05.008.
- [4] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering, 45(5):601–620, 1999.
- [5] R. Merle and J. Dolbow. Solving thermal and phase change problems with the eXtended finite element method. Computational mechanics, 28(5):339–350, 2002. doi: 10.1007/s00466-002-0298-y.
- [6] J. Chessa, P. Smolinski, and T. Belytschko. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 53(8):1959–1977, 2002. doi: 10.1002/nme.386.
- [7] P. Stapór. The XFEM for nonlinear thermal and phase change problems. International Journal of Numerical Methods for Heat & Fluid Flow, 25(2):400–421, 2015. doi: 10.1108/HFF-02-2014-0052.
- [8] J.Y. Wu and F.B. Li. An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks. Computer Methods in Applied Mechanics and Engineering, 295:77–107, 2015. doi: 10.1016/j.cma.2015.06.018.
- [9] P. Hansbo, M.G. Larson, and S. Zahedi. A cut finite element method for a stokes interface problem. Applied Numerical Mathematics, 85:90–114, 2014. doi: 10.1016/j.apnum.2014.06.009.
- [10] E. Wadbro, S. Zahedi, G. Kreiss, and M. Berggren. A uniformly well-conditioned, unfitted nitsche method for interface problems. BIT Numerical Mathematics, 53(3):791–820, 2013. doi: 10.1007/s10543-012-0417-x.
- [11] I. Babuška and U. Banerjee. Stable generalized finite element method (SGFEM). Computer Methods in Applied Mechanics and Engineering, 201:91–111, 2012. doi: 10.1016/j.cma.2011.09.012.
- [12] K. Kergrene, I. Babuška, and U. Banerjee. Stable generalized finite element method and associated iterative schemes; application to interface problems. Computer Methods in Applied Mechanics and Engineering, 305:1–36, 2016. doi: 10.1016/j.cma.2016.02.030.
- [13] G. Zi and T. Belytschko. New crack-tip elements for xfem and applications to cohesive cracks. International Journal for Numerical Methods in Engineering, 57(15):2221–2240, 2003. doi: 10.1002/nme.849.
- [14] G. Ventura, E. Budyn, and T. Belytschko. Vector level sets for description of propagating cracks in finite elements. International Journal for Numerical Methods in Engineering, 58(10):1571–1592, 2003. doi: 10.1002/nme.829.
- [15] J.E. Tarancón, A.Vercher, E. Giner, and F.J. Fuenmayor. Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 77(1):126–148, 2009. doi: 10.1002/nme.2402.
- [16] T.P. Fries. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 75(5):503–532, 2008. doi: 10.1002/nme.2259.
- [17] P. Stąpór. Application of xfem with shifted-basis approximation to computation of stress intensity factors. Archive of Mechanical Engineering, 58(4):447–483, 2011. doi: 10.2478/v10180-011-0028-0.
- [18] N. Moës, M. Cloirec, P. Cartraud, and J.-F. Remacle. A computational approach to handle complex microstructure geometries. Computer methods in applied mechanics and engineering, 192(28):3163–3177, 2003. doi: 10.1016/S0045-7825(03)00346-3.
- [19] J. Dolbow, N. Moës, and T. Belytschko. Discontinuous enrichment in finite elements with a partition of unity method. Finite elements in analysis and design, 36(3):235–260, 2000. doi:10.1016/S0168-874X(00)00035-4.
- [20] B.A. Saxby. High-order XFEM with applications to two-phase flows. PhD thesis, The University of Manchester, Manchester, UK, 2014. www.escholar.manchester.ac.uk/uk-ac-manscw:234445.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7827d25a-a164-4c82-b90a-54e9a7d60768