PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Surface Microtexture of Sputtered Indium Tin Oxide Thin Films

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research work involves the study of the 3-D surface microtexture of sputtered indium tin oxide (ITO) prepared on glass substrates by DC magnetron at room temperature. The samples were annealed at 450°C in air and were distributed into five groups, dependent on ambient combinations applied, as follows: I group, using argon (Ar); II group, using argon with oxygen (Ar+O2); III group, using argon with oxygen and nitrogen (Ar+O2+N2); IV group, using argon with oxygen and hydrogen (Ar+O2+H2); and V group, using argon with oxygen, nitrogen, and hydrogen (Ar+O2+N2+H2). The characterization of the ITO thin film surface microtexture was carried out by atomic force microscopy (AFM). The AFM images were stereometrically quantitatively analyzed to obtain statistical parameters, by ISO 25178-2: 2012 and ASME B46.1-2009. The results have shown that the 3-D surface microtexture parameters change in accordance with different fabrication ambient combinations.
Twórcy
  • Technical University of Cluj-Napoca, the Directorate of Research, Development and Innovation Management (DMCDI), Cluj- Napoca, 400020, Romania
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Aleja 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
  • Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, Georgia 30332, USA
Bibliografia
  • [1] V. A. Dao, H. Choi, J. Heo, H. Park, K. Yoon, Y. Lee, Y. Kim, N. Lakshminarayan, J. Yi, Curr. Appl. Phys. 10 (3), S506-S509 (2010). DOI: 10.1016/j.cap.2010.02.019
  • [2] B. Zhang, N. N. Zhang, J. F . Chen, Y. Hou, S. Yang, J. W . Guo, X. H. Yang, J. H. Zhong, H. F . Wang, P. Hu, H. J. Zhao, H. G. Yang, Sci. Rep. 3, 3109 (2013). DOI: 10.1038/srep03109
  • [3] O. M. Livvik, S. Diplas, A. Romanyuk, A. Ulyashin, J. Appl. Phys. 115, 083705 (2014). DOI: 10.1063/1.4866991
  • [4] A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, T. J. Marks, Mrs Bulletin. 25 (8), 45-51 (2000). DOI: 10.1557/mrs2000.150
  • [5] Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Lett. 6 (12), 2909-2915 (2006). DOI: 10.1021/nl062213d
  • [6] L. Shui-Yang, Thin Solid Films. 42 (8), S10-S13 (2010). DOI: 10.1016/j.tsf.2010.03.023
  • [7] J. H. Noh, H. S. Han, S. Lee, J. Y . Kim, K. S. Hong, G.-S. Han, H. Shin, H. S. Jung, Adv. Energy Mater. 1 (5), 829-835 (2011). DOI: 10.1002/aenm.201100241
  • [8] N. Boulanger, D. R. Barbero, Appl. Phys. Lett. 103 (2), 021116 (2013). DOI: 10.1063/1.4813498
  • [9] K. Sun, W. Zhou, X. Tang, F. Luo, Infrared Physics and Technology 78, 156-161 (2016). DOI: 10.1016/j.infrared.2016.07.021
  • [10] H. Cho, Y. H. Yun, Ceram. Int. 37 (2), 615-619 (2011). DOI: 10.1016/j.ceramint.2010.09.033
  • [11] J. Lee, S. Lee, G. Li, M. A. Petruska, D. C. Paine, S. Sun, J. Am. Chem. Soc. 134 (32), 13410-13414 (2012). DOI: 10.1021/ja3044807
  • [12] M. Himmerlich, M. Koufaki, Ch. Mauder, G. Ecke, V. Cimalla, J. A. Schaefer, E. Aperathitis, S. Krischok, Surf. Sci. 601 (18), 4082-4086 (2007). DOI: 10.1016/j.susc.2007.04.061
  • [13] V. Vasu, A. Subrahmanyam, Semicond. Sci. Technol. 7 (3), 320 (1992). DOI: 10.1088/0268-1242/7/3/006
  • [14] I. Hotovy, J. Pezodlt, M. Kadlecikova, T. Kups, L. Spiess, J. Breza, E. Sakalauskas, R. Goldhahn, V. Rehacek, Thin Solid Films. 518(16), 4508-4511 (2010). DOI: 10.1016/j.tsf.2009.12.018
  • [15] R. Bel Hadj Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631-2645 (1998).
  • [16] K. Kato, H. Omoto, T. Tomioka, A. Takamatsu, Thin Solid Films. 520 (1), 110-116 (2011). DOI: 10.1016/j.tsf.2011.06.061
  • [17] T . Koida, H. Fujiwara, M. Kondo, Solar Energy Materials & Solar Cells. 93 (6-7), 851-854 (2009).
  • [18] D. Dastan, Appl. Phys. A. 123, 699, 1-13, (2017). DOI: 10.1007/s00339-017-1309-3
  • [19] D. Dastan, J. Atomic, Molecul., Condensate Nano Phys. (JAMC-NP). 2 (2), 109-114 (2015).
  • [20] D. Dastan, S. Leila Panahi, A. P . Yengantiwar, A. G. Banpurkar, Adv. Sci. Lett. 22 (4), 950-953 (2016). DOI: 10.1166/asl.2016.7130
  • [21] M. Marikkannan, M. Subramanian, J. Mayandi, M. Tanemura, V. Vishnukanthan, J. M. Pearce, AIP Advances. 5, 017128 (2015). DOI: 10.1063/1.4906566
  • [22] D. Wan, P. Chen, J. Liang, S. Li, F. Huang, ACS. Appl. Mater. Interfaces. 3 (12), 4751-4755 (2011). DOI: 10.1021/am2012432
  • [23] C. Guillen, J. Herrero, J. Appl. Phys. 101, 073514 (2007). DOI: 10.1063/1.2715539
  • [24] M. Nie, T. Mete, K. Ellmer, J. Appl. Phys. 115, 154905 (2014). DOI: 10.1063/1.4871810
  • [25] T. Jäger, Y. E. Romanyuk, S. Nishiwaki, B. Bissig, F. Pianezzi, P. Fuchs, C. Gretener, M. Döbeli, A. N. Tiwari, J. Appl. Phys. 117, 205301 (2015). DOI: 10.1063/1.4921445
  • [26] N. Manavizadeh, F. A. Boroumand, E. A. Soleimani, F. Raissi, S. Bagherzadeh, A. Khodayri, M. Amin Rasouli, Thin Solid Films. 517 (7), 2324-2327 (2009). DOI: 10.1016/j.tsf.2008.11.027
  • [27] V. Korobov, M. Leibovitch, Y. Shapira, Appl. Phys. Lett. 65, 2290 (1994). DOI: 10.1063/1.112721
  • [28] Y. Shigesato, R. Koshi-ishi, T. Kawashima, J. Oshako, Vacuum. 59, 614-621 (2000). DOI: 10.1016/S0042-207X(00)00324-9
  • [29] Y. Sato, M. Taketomo, N. Ito, Miyamura A., Shigestao Y., Thin Solid Films. 516 (14), 4598-4602 (2008).
  • [30] Ş. Ţălu, Micro and Nanoscale Characterization of Three Dimensional Surfaces. Basics and Applications. Napoca Star Publishing House, Cluj-Napoca, Romania, (2015).
  • [31] Ş. Ţălu, S. Stach, A. Mahajan, D. Pathak, T. W. Agner, A. Kumar, R. K. Bedi, Surf. Interface Anal. 46 (4), 393-398 (2014). DOI: 10.1002/sia.5492
  • [32] Ş. Ţălu, S. Stach, S. Valedbagi, R. Bavadi, S. M. Elahi, M. Ţălu, Mater. Sci. Poland. 33 (3), 541-548 (2015). DOI: 10.1515/Msp-2015-0086
  • [33] A. Arman, Ş. Ţălu, C. Luna, A. Ahmadpourian, M. Naseri, M. Molamohammadi, J Mater Sci: Mater Electron. 26, 9630-9639 (2015). DOI: 10.1007/S10854-015-3628-5
  • [34] N. Naseri, S. Solaymani, A. Ghaderi, M. Bramowicz, S. Kulesza, Ş. Ţălu, M. Pourreza, S. Ghasemi, RSC Advances. 7, 12923-12930 (2017). DOI: 10.1039/C6ra28795f
  • [35] D. Elenkova, J. Zaharieva, M. Getsova, I. Manolov, M. Milanova, S. Stach, Ş. Ţălu, Int. J. Polym. Anal. Charact. 20, 42-56 (2015). DOI: 10.1080/1023666X.2014.955400
  • [36] Ş. Ţălu, S. Solaymani, M. Bramowicz, S. Kulesza, A. Ghaderi, S. Shahpouri, S. M. Elahi, J. Mater. Sci: Mater. Electron. 27, 9272-9277 (2016). DOI: 10.1007/S10854-016-4965-8
  • [37] Ş. Ţălu, S. Stach, S. Valedbagi, S. M. Elahi, R. Bavadi, Mater. Sci. Pol. 33 (1), 137-143 (2015). DOI: 10.1515/msp-2015-0010
  • [38] D. Raoufi, Physica B: Condensed Matter. 405 (1), 451-455, (2010). DOI: 10.1016/j.physb.2009.09.005
  • [39] Ş. Ţălu, S. Kulesza, M. Bramowicz, A. M. Pringle, J. M. Pearce, M. Murugesan, V. Venkatachalapathy, J. Mayandi, Materials Letters. 220, 169-171 (2018). DOI: 10.1016/j.matlet.2018.03.005
Uwagi
1. The authors would like to thank to professor Joshua M. Pearce, and Adam Pringle (Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA), for providing AFM data.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78214703-ec30-41dc-8997-ce42a355570f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.