Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Water pollution and scarcity are amongst the most pressing challenges affecting the water environment in the Gaza Strip. Agricultural activities play an important role in this issue, consuming more than 50% of the extracted water, while contributing to environmental degradation through the excessive use of pesticides and fertilisers. The grey water footprint (GWF) was quantified to evaluate pollution from crops using the Hoekstra methodology. The grey water totalled 30.63 mln m3, with 51% attributed to vegetables, 44.5% to horticultural trees, and 4.5% to field crops between 2018 and 2022. An evaluation of the sustainability of the water footprint revealed that the assimilation capacity of water resources has been completely consumed. As a result, the Gaza Strip is classified as an unsustainable area, which is a serious violation of globally approved water quality standards. To optimise the grey water footprint, the nitrogen balance, N-leakage rate, and associated uncertainties were analysed using fractional programming, leading to the development of a model aimed at achieving optimal results. The findings show the importance of implementing this approach in the Gaza Strip, enabling policymakers and local authorities to develop a promising strategy for agricultural practices. This would promote sustainable and effective management of water resources and a safe and productive agricultural environment.
Wydawca
Czasopismo
Rocznik
Tom
Strony
120--129
Opis fizyczny
Bibliogr. 41 poz., mapa, tab., wykr.
Twórcy
autor
- Islamic University of Gaza, Faculty of Engineering, Civil Engineering Department, Gaza, Occupied Palestinian Territories
autor
- Islamic University of Gaza, Faculty of Engineering, Civil Engineering Department, Gaza, Occupied Palestinian Territories
autor
- Al-Azhar University, Faculty of Science, Chemistry Department, Occupied Palestinian Territories
Bibliografia
- Aish, A.M. (2014) “Estimation of water balance components in the Gaza Strip with GIS based WetSpass model,” Civil and Environmental Research, 6(11), pp. 77–84. Available at: https://www.iiste.org/Journals/index.php/CER/article/view/17076/17436 (Accessed: June 1, 2024).
- Al-Najjar, H., Ceribasi, G. and Ceyhunlu, A.I. (2021) “Effect of unconventional water resources interventions on the management of Gaza coastal aquifer in Palestine,” Water Supply, 21(8), pp. 4205–4218. Available at: https://doi.org/10.2166/ws.2021.170.
- Al-Najar, H. et al. (2014) “Framework analysis of socio-economic and health aspects of nitrate pollution from urban agricultural practices: The Gaza Strip as a case study,” Journal of Agriculture and Environmental Sciences, 3(2), pp. 355–370.
- Bulsink, F., Hoekstra, A.Y. and Booij, M.J. (2010) “The water footprint of Indonesian provinces related to the consumption of crop products,” Hydrology and Earth System Sciences, 14, pp. 119–128. Available at: https://doi.org/10.5194/hess-14-119-2010.
- Cui, H., Guo, P. and Li, M. (2013) “Interval fractional programming optimization model for irrigation water allocation under uncertainty,” Journal of China Agricultural University, 23(3), pp. 111–121.
- D’Ambrosio, E., Girolamo De, A.M. and Rulli, M.C. (2018) “Assessing sustainability of agriculture through water footprint analysis and in-stream monitoring activities,” Journal of Cleaner Production, 200, pp. 454–470. Available at: https://doi.org/10.1016/j.jclepro.2018.07.229.
- Dalin, C. et al. (2017) “Groundwater depletion embedded in international food trade,” Nature, 543, pp. 700–704. Available at: https://doi.org/10.1038/nature21403.
- EMCC (2014) Environmental and Social Impact Assessment (ESIA) & Environmental and Social Management Plan Final Report (ESMP) For Gaza Water Supply and Sewage Systems Improvement Project (WSSSIP) Phase 1 and Additional Financing (AF) Final Report September, 2014 AF revision prepared by PMU. Gaza: Engineering and Management Consulting Center. Available at: https://www.pwa.ps/userfiles/file/%D8%AA%D9%82%D8%A7%D8%B1%D9%8A%D8%B1/%D8%AA%D8%B5%D9%86%D9%8A%D9%81%201/FINAL_ESIA_ESMP_22Sep2014.pdf (Accessed: May 5, 2024).
- FAO (2012) FertiStat. [On-line database]. Rome: Food and Agriculture Organization. https://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/scpi-home/framework2/en/#c109535 (Accessed: May 20, 2024).
- FAO and IIASA (2023) Harmonized world soil database version 2.0. Rome and Laxenburg: Food and Agriculture Organization of the United Nations, International Institute for Applied Systems Analysis. Available at: https://doi.org/10.4060/cc3823en.
- Franke, N., Hoekstra, A.Y. and Boyacioglu, H. (2013) “Grey water footprint accounting: Tier 1 supporting guidelines,” Value of Water Research Report, No. 65. Delft: Unesco-IHE Institute for Water Education. Available at: https://ris.utwente.nl/ws/portal-files/portal/5141740/Report65-GreyWaterFootprint-Guidelines.pdf (Accessed: May 25, 2024).
- Fu, T. et al. (2022) “Measurement and driving factors of grey water footprint efficiency in Yangtze River Basin,” Science of the Total Environment, 802, 149587. Available at: https://doi.org/10.1016/j.scitotenv.2021.149587.
- Fulton, J., Cooley, H. and Gleick, P.H. (2014) “Water footprint outcomes and policy relevance change with scale considered: Evidence from California,” Water Resources Management, 28, pp. 3637–3649. Available at: https://doi.org/10.1007/s11269-014-0692-1.
- Heffer, P. (2013) Assessment of fertilizer use by crop at the global level 2010-2010/11. Paris: IFA. Available at: https://www.fertilizer.org/wp-content/uploads/2023/01/AgCom.13.39-FUBC-assessment-2010.pdf (Accessed: May 20, 2024).
- Herath, I.K. (2013) The water footprint of agricultural products in New Zealand: the impact of primary production on water resources. PhD Thesis. Palmerston North, New Zealand: Massey University. Available at: https://mro.massey.ac.nz/server/api/core/bit-streams/3416ee08-0a8d-4245-be39-79bebcb5035d/content (Accessed: June 1, 2024).
- Hoekstra, A.Y. and Chapagain, A.K. (2011) Globalization of water: Sharing the planet’s freshwater resources. Hoboken: Wiley-Blackwell. Available at: https://doi.org/10.1002/9780470696224.
- Hoekstra, A.Y. et al. (2011) The water footprint assessment manual: Setting the global standard. London–Washington, DC: Earthscan. Available at: https://waterfootprint.org/resources/TheWaterFoot-printAssessmentManual_English.pdf (Accessed: May 22, 2024).
- Hoekstra, A.Y. and Mekonnen, M.M. (2012) “The water footprint of humanity,” Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 3232–3237. Available at: https://doi.org/10.1073/pnas.1109936109.
- IFA (2022) Fertilizer use by crop and country for the 2017–2018 period. Paris, France: International Fertilizer Association. Available at: https://www.ifastat.org/consumption/fertilizer-use-by-crop (Accessed: June 5, 2024).
- JICA (2017) Data collection survey on Gaza reconstruction in water and energy sector in Palestine. Ramallah: Japan International Cooperation Agency.
- Lathuilliere, M.J. et al. (2018) “Evaluating water use for agricultural intensification in Southern Amazonia using the water footprint sustainability assessment,” Water, 10, 349.
- Liu, J. et al. (2020) “Environmental sustainability of water footprint in mainland China,” Sustainability, 1, pp. 8–17. Available at: https://doi.org/10.1016/j.geosus.2020.02.002.
- Mekonnen, M.M. and Hoekstra, A.Y. (2011) “The green, blue and grey water footprint of crops and derived crop products,” Hydrology and Earth System Sciences, 15, pp. 1577–1600. Available at: https://doi.org/10.5194/hess-15-1577-2011.
- Mekonnen, M.M. and Hoekstra, A.Y. (2020) Sustainability of the blue water footprint of crops. Advances in Water Resources, 143, 103679. Available at: https://doi.org/10.1016/j.advwatres.2020.103679.
- Miguel De, Á., Kallache, M. and García-Calvo, E. (2015) “The water footprint of agriculture in Duero River Basin,” Sustainability, 7(6), pp. 6759–6780. Available at: https://doi.org/10.3390/su7066759.
- Mizyed, A., Mogheir, Y. and Hamada, M. (2024) “Employing the agricultural water footprint concept to enhance the sustainable management of water resources: A review,” Water Practice and Technology. Available at: https://doi.org/10.2166/wpt.2024.274.
- Nachtergaele, F. (2023) Harmonized world soil database version 2.0. Rome: FAO. Available at: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/ (Accessed: April 28, 2024).
- Nassar, A. et al. (2009) “Attitudes of farmers toward sludge use in the Gaza Strip,” Environmental Monitoring and Assessment, 10, pp. 89–101. Available at: https://doi.org/10.1007/s10661-017-6074-4.
- Novoa, V. et al. (2019) “Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile,” Ecological Indicators, 98, pp. 19–28. Available at: https://doi.org/10.1016/j.ecolind.2018.10.048
- PCBS (2022) Palestinians at the end of 2022. Ramallah: Palestinian Central Bureau of Statistics. Available at: https://www.pcbs.gov.ps/Downloads/book2639.pdf (Accessed: May 22, 2024).
- PCBS (2023) Agriculture Census, 2021 – Final Results. Ramallah: Palestinian Central Bureau of Statistics. Ramallah: Palestinian Central Bureau of Statistics.
- Raeisi, L.G. et al. (2019) “Effect and side-effect assessment of different agricultural water saving measures in an integrated framework,” Agricultural Water Management, 223, 105685. Available at: https://doi.org/10.1016/j.agwat.2019.105685.
- Recanati, F. (2013) Trading off food security and environmental impacts: the water footprint of food production in the Gaza strip. MSc Thesis. Milano: Politecnico Milano. Available at: https://www.politesi.polimi.it/bitstream/10589/80923/3/2013_07_Recanati.pdf (Accessed: April 28, 2024).
- Roy, R. et al. (2003) “Assessment of soil nutrient balance,” FAO Fertilizer and Plant Nutrition Bulletin, 14. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/ec158858-6c80-4553-8c38-4c6662379a2e/content (Accessed: June 1, 2024).
- Singh, A. (2014) “Simulation–optimization modeling for conjunctive water use management,” Agricultural Water Management, 141, pp. 23–29. Available at: https://doi.org/10.1016/j.agwat.2014.04.003.
- Tomlinson, J.E., Arnott, J.H. and Harou, J.J. (2020) “A water resource simulator in Python,” Environmental Modelling & Software, 126, 104635. Available at: https://doi.org/10.1016/j.envsoft.2020.104635.
- Ubeid, K.F. and Ramadan, K.A. (2020) “Soil types and their relations with radon concentration levels in Middle Governorate of Gaza Strip, Palestine,” Polish Journal of Soil Science, 53, pp. 55–72. Available at: https://doi.org/10.17951/pjss/2020.53.1.55.
- Vanham, D., Bidoglio, G. (2014) “The water footprint of Milan,” Water Science & Technology, 69, pp. 789–795. Available at: https://doi.org/10.2166/wst.2013.759.
- Wang, Z. et al. (2013) “An input–output approach to evaluate the water footprint and virtual water trade of Beijing, China,” Journal of Cleaner Production, 42, pp. 172–179. Available at: https://www.sciencedirect.com/journal/journal-of-cleaner-production (Accessed: June 10, 2024).
- Willigen de, P.D. (2000) An analysis of the calculation of leaching and denitrification losses as practised in the NUTMON approach. Wageningen: Wageningen University and Research.
- Zhang, C. et al. (2012) Multi-objective optimization of crop planting structure in irrigation area based on remote sensing technology. Dallas, Texas, 29 Jul–1 Aug, 2012. St. Joseph: American Society of Agricultural and Biological Engineers. Available at: https://doi.org/10.13031/2013.42271.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-781dbf1f-889b-4cd3-aa03-e10b783d18e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.