PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of the needle probe test for evaluation of thermal conductivity of composite materials: two-scale analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The needle probe test, as a thermal conductivity measurement method, has become very popular in recent years. In the present study, the efficiency of this methodology, for the case of composite materials, is investigated based on the numerical simulations. The material under study is a two-phase composite with periodic microstructure of “matrix-inclusion” type. Two-scale analysis, incorporating micromechanics approach, is performed. First, the effective thermal conductivity of the composite considered is found by the solution of the appropriate boundary value problem stated for the single unit cell. Next, numerical simulations of the needle probe test are carried out. In this case, two different locations of the measuring sensor are considered. It is shown that the “equivalent” conductivity, derived from the probe test, is strongly affected by the location of the sensor. Moreover, comparing the results obtained for different scales, one can notice that the “equivalent” conductivity cannot be interpreted as the effective one for the composites considered. Hence, a crude approximation of the effective property is proposed based on the volume fractions of constituents and the equivalent conductivities derived from different sensor locations.
Wydawca
Rocznik
Strony
55--62
Opis fizyczny
Bibliogr. 15 poz., tab., rys.
Twórcy
autor
  • Institute of Geotechnics and Hydrotechnics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Geotechnics and Hydrotechnics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,
  • Institute of Geotechnics and Hydrotechnics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Institute of Geotechnics and Hydrotechnics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] MOHSENIN N.N., Thermal properties of foods and agricultural materials, Gordon and Breach, New York, 1980.
  • [2] CARSLAW H.S., JAEGER J.C., Conduction of heat in solids, Clarendon Press, Oxford, 1959.
  • [3] RICHE F., SCHNEEBELI M., Microstructural change around a needle probe to measure thermal conductivity of snow, Journal of Glaciology, 2010, Vol. 56, No. 199.
  • [4] FONTANA A.J., VERITH J., IKEDIALA J., REYES J., WACKER B., Thermal properties of selected foods using dual needle heat-pulse sensor, written for Presentation at the 1999 ASAE/CSAE-SCGR Annual International Meeting, Toronto, Ontario Canada, July 18–21, 1999.
  • [5] HANSON J.L., EDIL T.B., YESILLER N., Thermal properties of high water content materials, Geotechnics of High Water Content Materials, ASTM D5334-05 STP 1374, T.B. Edil, P.J. Fox (eds.), ASTM D5334-05 International, West Conshohocken, PA, 2000, 137–151.
  • [6] RÓŻAŃSKI A., SOBÓTKA M., On the interpretation of the needle probe test results: thermal conductivity measurement of clayey soils, Studia Geotechnica and Mechanica, 2013, Vol. 35, No.1, 195–207.
  • [7] NICOLAS J., ANDR’E P., RIVEZ J.F., DEBBAUT V., Thermal conductivity measurements in soil using an instrument based on the cylindrical probe method, Review of Scientific Instruments, 1993, Vol. 64, No. 3, 774–780.
  • [8] KD2 Pro Thermal Properties Analyzer Operator’s Manual, Version 10, Decagon Devices, Inc., 2011.
  • [9] SUQUET P., Elements of homogenization for inelastic solid mechanics, [in:] Homogenization technique for composite media, Lecture notes in Physics, Vol. 272, Springer, 1987.
  • [10] ŁYDŻBA D., Applications of asymptotic homogenization method in soil and rock mechanics, Scientific Papers of the Institute of Geotechnics and Hydrotechnics of the Wroclaw University of Technology, 2002 (in Polish).
  • [11] ŁYDŻBA D., Effective properties of composites: Introduction to Micromechanics, Wroclaw University of Technology, PRINTPAP, Wroclaw, 2011.
  • [12] MILTON G.W., The theory of composites, Cambridge University Press, 2002.
  • [13] FlexPDE, User Guide Version 5.0, PDE Solutions Inc., 2005.
  • [14] Wolfram Mathematica 7, Wolfram Research, Inc., 2009.
  • [15] ABRAMOVITZ M., STEGUN I. A., Handbook of mathematical functions, Dover Publications Inc., New York, 1972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-781baffe-61b1-4c2a-a89d-5dd0b8c35392
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.