PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nano-particles transport in a concentric annulus: a lattice Boltzmann approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A combination of the lattice Boltzmann method and lagrangian Runge-Kutta procedure is used to study dispersion and removal of nano-particles in a concentric annulus. The effect of aspect ratio, Rayleigh number and particles diameter are examined on particles removal and their dispersion characteristics. Simulations are performed for the Rayleigh number ranges from 103 to 105 and aspect ratio of 2, 3 and 4. Higher aspect ratios have led to weaker recirculation strength. The finest particles move on stochastic path due to the effect of Brownian motion. The Brownian motion has a greater effect on the removal of nano-particles with respect to thermophoresis.
Słowa kluczowe
Rocznik
Strony
683--695
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Mechanical and Aerospace Engineering, Ramsar Branch, Islamic Azad University, Ramsar, Iran
  • Young Researchers Club, Babol Branch, Islamic Azad University, Babol, Iran
autor
  • Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
Bibliografia
  • 1. Abouei Mehrizi A., Farhadi M., Hassanzadeh Afrouzi H., Sedighi K., Rabienataj A.A., 2012, Mixed convection heat transfer in a ventilated cavity with hot obstacle: Effect of nano fluid and outlet port location, International Communications in Heat and Mass Transfer, 39, 1000-1008
  • 2. Abouei Mehrizi A., Farhadi M., Hassanzadeh Afrouzi H., Shayamehr S., 2013a, Lattice Boltzmann simulation of natural convection flow around a horizontal cylinder located beneath an insulation plate, Journal of Theoretical and Applied Mechanics, 51, 360-367
  • 3. Abouei Mehrizi A., Farhadi M., Sedighi K., Aghajani Delavar M., 2013b, Effect of fin position and porosity on heat transfer improvement in a plate porous media heat exchanger, Journal of the Taiwan Institute of Chemical Engineers, 44, 3, 420-431
  • 4. Abouei Mehrizi A., Farhadi M., Shayamehr S., 2013c, Natural convection flow of Cu-Water nanofluid in horizontal cylindrical annuli with inner triangular cylinder using lattice Boltzmann method, International Communications in Heat and Mass Transfer, 44, 3, 147-156
  • 5. Abouei Mehrizi A., Sedighi K., Farhadi M., Sheikholeslami M., 2013d, Lattice Boltzmann simulation of natural convection heat transfer in an elliptical-triangular annulus, International Communications in Heat and Mass Transfer, 48, 164-177
  • 6. Akbar M.K., Rahman M., Ghiaasiaan S.M., 2009, Particle transport in a small square enclosure in laminar natural convection, Journal of Aerosol Science, 40, 747-761
  • 7. Chein R., Liao W., 2005, Thermophoretic effects on nano-particle deposition in channel flow, Heat and Mass Transfer, 42, 71-79
  • 8. Chen F., Yu S.C.M., Lai A.C.K., 2006, Modeling particle distribution and deposition in indoor environments with a new drift–flux model, Atmospheric Environment, 40, 357-367
  • 9. Golkarfard V., Gandjalikhan Nasab S.A., Ansari A.B., Bagheri G.H., 2012, Numerical investigation on deposition of solid particles in a lid-driven square cavity with inner heated obstacles, Advanced Powder Technology, 23, 6, 736-743
  • 10. Golovin M., Putnam A., 1962, Inertial impaction on single elements, Industrial and Engineering Chemistry Fundamentals, 1, 264-273
  • 11. Guo Z., Shi B., Zheng C., 2002, A coupled lattice BGK model for the Boussinesq equations, International Journal for Numerical Methods in Fluids, 39, 325-342
  • 12. Hassanzadeh Afrouzi H., Farhadi M., 2013, Mix convection heat transfer in a lid driven enclosure filled by nanofluid, Iranica Journal of Energy and Enviornment, 4, 4, 376-384
  • 13. Hassanzadeh Afrouzi H., Farhadi M., Abouei Mehrizi A., 2012a, Numerical simulation of particles transport in a concentric annulus, Advanced Powder Technology, 24, 3, 575-584
  • 14. Hassanzadeh Afrouzi H., Sedighi K., Farhadi M., Fattahi E., 2012b, Dispersion and deposition of micro particles over two square obstacles in a channel via hybrid lattice Boltzmann method and discrete phase model, International Journal of Engineering, 25, 3, 257-266
  • 15. Hauf W., Grigull U., 1966, Measurements of the heat transfer at a horizontal cylindrical container – essential parameters, Waerme- und Stoffuebertragung, 9, 1, 21-28
  • 16. Jourabian M., Farhadi M., Rabienataj A.A., Abouei Mehrizi A., 2013, Lattice Boltzmann simulation of melting phenomenon with natural convection from an eccentric annulus, Thermal Science, 17, 3, 877-890
  • 17. Kuehn T., Goldstein R., 1976, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, Journal of Fluid Mechanics, 74, 695-719
  • 18. Kuehn T., Goldstein R., 1978, An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli, Journal of Heat Transfer, 100, 635-644
  • 19. Li A., Ahmadi G., 1992, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow, Aerosol Science and Technology, 16, 209-226
  • 20. Mei R., Luo L.S., Shy W., 1999, An accurate curved boundary treatment in the lattice Boltzmann method, Journal of Computational Physics, 155, 307-330
  • 21. Puragliesi R., Dehbi A., Leriche E., Soldati A., Deville M.O., 2011, DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers, International Journal of Heat and Fluid Flow, 32, 915-931
  • 22. Rahman M.Md., Elias Md., Alim M.A., 2009,Mixed convection flow in a rectangular ventilated cavity with a heat conducting square cylinder at the center, Journal of Engineering and Applied Sciences, 4, 5, 155-161
  • 23. Saffman P.G., 1965, The lift on a small sphere in a slow shear flow, Journal of Fluid Mechanics, 22, 385-400
  • 24. Shams M., Ahmadi G., Rahimzadeh H., 2000, A sublayer model for deposition of nano-and micro-particles in turbulent flows, Chemical Engineering Science, 55, 6097-6107
  • 25. Talbot L., Cheng R., Schefer R., Willis D., 1980, Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics, 101, 737-758
  • 26. Vasak F., Bowen B., Chen C., Kastanek F., Epstein N., 1995, Fine particle deposition in laminar and turbulent flows, Canadian Journal of Chemical Engineering, 73, 785-792
  • 27. Vessakosol P., Charoensuk J., 2010, Numerical analysis of heat transfer and flow field around cross-flow heat exchanger tube with fouling, Applied Thermal Engineering, 30, 1170-1178
  • 28. Yu D., Mei R., Luo L.S., Shyy W., 2003, Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences, 39, 329-367
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-781473df-3222-42d5-80a5-06ed8078fe13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.