Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Modelling beach volume changes caused by moderate and weak hydrodynamic conditions
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 66305
Opis fizyczny
Bibliogr. 56 poz., fot., rys., wykr.
Twórcy
autor
- Institute of Marine and Environmental Sciences, University of Szczecin, Poland
Bibliografia
- 1. Bruun, P., 1962. Sea level rise as a cause of shore erosion. J. Waterway. Div. ASCE 88(1), 117-130. https://doi.org/10.1061/JWHEAU.0000252
- 2. Bugajny, N., Furmańczyk, K., 2014. Dune coast changes caused by weak storm events in Miedzywodzie, Poland. J. Coastal Res., SI 70, 211-216. https://doi.org/10.2112/SI70-036.1
- 3. Bugajny, N., Furmańczyk, K., 2017. Comparison of Short- Term Changes Caused by Storms along Natural and Protected Sections of the Dziwnow Spit, Southern Baltic Coast. J. Coastal Res. 33, 77-785. https://doi.org/10.2112/JCOASTRES-D-16-00055.1
- 4. Bugajny, N., Furmańczyk, K., 2020. Short-term volumetric changes of the berm and beachface during storm calming. J. Coastal Res., SI 95, 398-402. https://doi.org/10.2112/SI95-077.1a>
- 5. Bugajny, N., Furmańczyk, K., 2022. Defining a single set of calibration parameters and prestorm bathymetry in the modeling of volumetric changes on the southern Baltic Sea dune coast. Oceanologia 64(1), 160-175. https://doi.org/10.1016/j.oceano.2021.10.004
- 6. Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., 2015. Application of XBeach to model a storm response on a sandy spit at the southern Baltic. Oceanol. Hydrobiol.Stud. 44, 552-562. https://doi.org/10.1515/ohs-2015-0052
- 7. Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., Paplińska- Swerpel B., 2013. Modelling morphological changes of beach and dune induced by storm on the Southern Baltic coast using XBeach (case study: Dziwnow Spit). J. Coastal Res. 65, 672-677. https://doi.org/10.2112/SI65-114.1
- 8. Cherneva, Z., Andreeva, N., Pilar, P., Valchev, N., Petrova, P., Guedes Soares, C., 2008. Validation of the WAMC4 wave model for the Black Sea. Coast. Eng. 55(11), 88-893. https://doi.org/10.1016/j.coastaleng.2008.02.028
- 9. Ciavola, P., Ferreira, O., Van Dongeren, A., Van Thiel de Vries, J., Armaroli, C., Harley, M., 2014. Prediction of Storm Impacts on Beach and Dune Systems. [In:] Hydrometeorological Hazards: Interfacing Science and Policy, Quevauviller, P. (Ed.), Wiley-Blackwell, 227-250. https://doi.org/10.1002/9781118629567.ch3d
- 10. Cieślikiewicz, W., Herman, A., 2001. Modelowanie falowania wiatrowego Morza Bałtyckiego i Zatoki Gdańskiej. Inżynieria Morska i Geotechnika 22(4), 173-184.
- 11. Cieślikiewicz, W., Herman, A., 2002. Wave and current modelling over the Baltic Sea. Proc. 28th Interntl. Conf. Coastal Engng Conf., ICCE 2002, Cardiff, Wales.
- 12. Coco, G., Senechal, N., Rejas, A., Bryan, K.R., Capo, S., Parisot, J.P., Brown, J.A., MacMahan, J.H.M., 2014. Beach response to a sequence of extreme storms. Geomorphology, 204, 493-501. https://doi.org/10.1016/j.geomorph.2013.08.028
- 13. Dissanayake, P., Brown, J., Karunarathna, H., 2014. Modelling storm-induced beach/dune evolution: Sefton coast, Liverpool Bay, UK. Mar. Geol. 357, 225-242. https://doi.org/10.1016/j.margeo.2014.07.013
- 14. Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015a. Effects of storm clustering on beach/dune evolution. Mar. Geol. 370, 63-75. https://doi.org/10.1016/j.margeo.2015.10.010.
- 15. Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015b. Comparison of storm cluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 164, 301-312. https://doi.org/10.1016/j.ecss.2015.07.040
- 16. Dobracki, R., Zachowicz, J., 2005. Mapa Geodynamiczna Polskiej Strefy Brzegowej Bałtyku. Państwowy Instytut Geologiczny, Oddział Pomorski, scale 1:10,000, 2 sheets.
- 17. Dodet, G., Castelle, B., Masselink, G., Scott, T., Davidson, M., Floch, F., Jackson, D., Suanez, S., 2019. Beach recovery from extreme storm activity during the 2013-14 winter along the Atlantic coast of Europe. Earth Surf. Process. Landforms 44, 393-401. https://doi.org/10.1002/esp.4500
- 18. Dudzińska-Nowak, J., 2006a. Coastline long-term changes of the selected area of the Pomeranian Bay. [In:] Coastal Dynamic, Geomorphology and Protection, Tubielewicz,A. (ed.), Gdańsk University of Technology, Gdańsk, 163-170.
- 19. Dudzińska-Nowak, J., 2006b. Wpływ metod ochrony brzegu morskiego na zmiany położenia linii podstawy wydmy na wybranym przykładzie. [In:] Człowiek i środowisko przyrodnicze Pomorza Zachodniego: III. Środowisko przyrodnicze i problemy społeczno-ekonomiczne, Koźmiński Cz., Dutkowski, M., Radziejewska, T. (Eds.), Szczecin, 91-98.
- 20. Dudzińska Nowak, J., 2015. Metody ochrony zachodniego wybrzeża Polski i ich wpływ na zmiany brzegu w latach 1938-2015. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.
- 21. Dudzińska-Nowak, J., Wężyk, P., 2014. Volumetric changes of a soft cliff coast 2008-2012 based on DTM from airborne laser scanning (Wolin Island, southern Baltic Sea). J. Coast. Res. 70, 59-64. https://doi.org/10.2112/si70-011.1
- 22. Ferreira, O., 2005. Storm groups versus extreme single storms: predicted erosion and management consequences. J. Coastal Res. SI 42, 221-227.
- 23. Furmańczyk, K., Dudzińska-Nowak, J., 2009. Effects of extreme storms on coastline changes: A southern Baltic example. J. Coastal Res. 56, 1637-1640.
- 24. Harley, M., Armaroli, C., Ciavola, P., 2011. Evaluation of XBeach predictions for a real-time warning system in Emilia-Romagna, Northern Italy. J. Coastal Res. 64, 1861-1865.
- 25. Harter, C., Figlus, J., 2017. Numerical modeling of the morphodynamic response of a low-lying barrier island beach and foredune system inundated during Hurricane Ike using. XBeach and CSHORE. Coast. Eng. 120, 64-74. https://doi.org/10.1016/j.coastaleng.2016.11.005
- 26. Kombiadou, K., Costas, S., Roelvink, D., 2021. Simulating Destructive and Constructive Morphodynamic Processes in Steep Beaches. J. Mar. Sci. Eng. 9(1), 86. https://doi.org/10.3390/jmse9010086
- 27. Masselink, G., Hughes, M.G., Knight, J., 2011. Introduction to Coastal Processes and Geomorphology. Routledge, London, 288 pp.
- 28. McCall, R.T., Van Thiel de Vries, J.S.M., Plant, N.G., Van Dongeren, A.R., Roelvink, J.A., Thompson, D.M., Reniers, A.J.H.M., 2010. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast. Eng. 57, 668-683. https://doi.org/10.1016/j.coastaleng.2010.02.006
- 29. Musielak, S. Furmańczyk, K., Bugajny N., 2017. Factors and processes forming the Polish Southern Baltic Sea coast on various temporal and spatial scales. [In:] Coastline changes of the Baltic Sea from South to East: past and future projection, Harff, J., Furmańczyk, K. and von Storch, H. (Eds.), Coastal Res. Library, Vol. 19, 69-86.
- 30. Musielak, S., Łabuz, T., Wochna, S., 2007. Procesy morfodynamiczne strefy brzegowej Mierzei Dziwnowskiej. [In:] Geologia i geomorfologia Pobrzeża i Południowego Bałtyku, Florek W. (Ed.), Wydaw. PAP, 63-75.
- 31. Paplińska, B., 1999. Wave analysis at Lubiatowo and in the Pomeranian Bay based on measurements from 1997/ 1998 – comparison with modelled data (WAM4 model). Oceanologia 41(2), 241-254.
- 32. Paplińska, B., 2001. Specific features of sea waves in the Pomeranian Bay. Arch. Hydro-Eng. Environ. Mech. 48, 55-72.
- 33. Paplińska, B., Reda, A., 2001. Regional variability of the wave climate at the Polish coast of the Baltic Sea. [In:] Zastosowania mechaniki w budownictwie lądowym i wodnym, Szmidt, K. (Ed.), Księga Jubileuszowa poświęcona 70-leciu urodzin Profesora Piotra Wilde. Wyd. IBW PAN, Gdańsk, 191-215.
- 34. Pender, D., Karunarathna, H., 2013. A statistical-process based approach for modelling beach profile variability. Coast. Eng. 81, 19-29. https://doi.org/10.1016/j.coastaleng.2013.06.006
- 35. Phillips, M.S., Blenkinsopp, C.E., Splinter, K.D., Harley, M.D., Turner, I.L., 2019. Modes of berm and beachface recovery following stormreset: Observations using acontinuously scanning lidar. J. Geophys. Res. 124, 720-736. https://doi.org/10.1029/2018JF004895
- 36. Phillips, M.S., Harley, M.D., Turner, I.L., Splinter, K.D., Cox, R.J., 2017. Shoreline recovery on wave-dominated sandy coastlines: the role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 385, 146-159. https://doi.org/10.1016/j.margeo.2017.01.005
- 37. Ponce de León, S., Guedes Soares, C., 2008. Sensitivity of wave model predictions to wind fields in the Western Mediterranean sea. Coast. Eng. 55(11), 920-929.
- 38. Roelvink, J.A., Brøker, J., 1993. Cross-shore profile models. Coast. Eng. 21, 163-191.
- 39. Roelvink, D., Costas, S., 2019. Coupling nearshore and aeolian processes: XBeach and duna process-based models. Environ. Model. Software 115, 98-112. https://doi.org/10.1016/j.envsoft.2019.02.010
- 40. Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., Lescinski, J., 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133-1152. https://doi.org/10.1016/j.coastaleng.2009.08.006
- 41. Sallenger, A.H.J., 2000. Storm impact scale for barrier islands. J. Coast. Res. 16, 890-895.
- 42. Schambach, L., Grilli, A.R., Grilli, S.T., Hashemi,. M.R., King, J.W., 2018. Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline: Application to the southern Rhode Island coast. Coast. Eng. 133, 26-42. https://doi.org/10.1016/j.coastaleng.2017.12.004
- 43. Sutherland, J., Peet, A.H., Soulsby, R.L., 2004. Evaluating the performance of morphological models. Coast. Eng. 51, 917-939. https://doi.org/10.1016/j.coastaleng.2004.07.015
- 44. Splinter, K.D., Carley, J.T., Golshani, A., Tomlinson, R., 2014. A relationship to describe the cumulative impact of storm clusters on beach erosion. Coast. Eng. 83, 49-55. https://doi.org/10.1016/j.coastaleng.2013.10.001
- 45. Splinter, K.D., Palmsten, M.L., 2012. Modeling dune response to an East Coast Low. Mar. Geol. 329-331, 46-57. https://doi.org/10.1016/j.margeo.2012.09.005
- 46. Sztobryn, M., Stigge, H.-J., Wielbińska, D., Weidig, B., Stanisławczyk, I., Kańska, A., Krzysztofik, K., Kowalska, B., Letkiewicz, B., and Mykita, M., 2005. Storm Surges in the Southern Baltic Sea (western nd central parts). Rostock Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, vol. 39, 74 pp.
- 47. Terefenko, P., Giza, A., Paprotny, D., Kubicki, A., Winowski, M., 2018. Cliff Retreat Induced by Series of Storms at Międzyzdroje (Poland). J. Coastal Res., 85, 181-185. https://doi.org/10.2112/SI85-037.1
- 48. Turner, I.L., Harley, M.D., Short, A.D., Simmons, J.A., Bracs, M.A., Phillips, M.S., Splinter, K.D., 2016. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Sci. Data, 3, 13. https://doi.org/10.1038/sdata.2016.24
- 49. Valchev, N., Pilar, P., Cherneva, Z., Guedes Soares, C., 2004. Set-up and validation of a third-generation wave model for the Black Sea. Proc. 7th Int. Conf. “BLACK SEA 2004”, Sci. Tech. Univ. Varna, Bulgaria, 273-279.
- 50. van Dam, T., 2019. Numerical Modelling of Beach Recovery Following a Storm Event. PhD Thesis, Delft University of Technology. http://repository.tudelft.nl/
- 51. van Rijn, L.C., Wasltra, D.J.R., Grasmeijer, B., Sutherland, J., Pan, S., Sierra, J.P., 2003. The predictability of crossshorebed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coast. Eng. 47, 295-327. https://doi.org/10.1016/S0378-3839(02)00120-5
- 52. Volpano, Ch.A., Zoet, L.K., Rawling, J.E., Theuerkauf, E.J., 2022. Measuring and modelling nearshore recovery of an eroded beach in Lake Michigan, USA. J. Great Lakes Res. 48(3), 633-644. https://doi.org/10.1016/j.jglr.2022.03.012
- 53. Vousdoukas, M., Almeida, L., Ferreira, Ó., 2011. Modelling stor- m-induced beach morphological change in a mesotidal, reflective beach using XBeach. J. Coastal Res. 64, 1916-1920.
- 54. Vousdoukas, M.I., Ferreira, Ó., Almeida, L.P., Pacheco, A., 2012. Toward reliable storm-hazard forecasts: XBeach calibration and its potential application in an operational early-warning system. Ocean Dynam. 62, 1001-1015. https://doi.org/10.1007/s10236-012-0544-6
- 55. WAMDI Group, 1988. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, 1775-181.
- 56. Williams, J.J., Esteves, L.S., Rochford, L.A., 2015. Modelling storm responses on a high-energy coastline with XBeach. Model. Earth Syst. Environ. 1, 3. https://doi.org/10.1007/s40808-015-0003-8
- 57. Zawadzka-Kahlau, E., 1999. Tendencje rozwojowe polskich brzegów Bałtyku południowego, Gdańskie Towarzystwo Naukowe, Gdańsk, 147 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7812935c-40a8-4d62-8d97-c7bc200e054d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.