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Abstract: Uncertain versions of three task scheduling problems:
P‖Cmax, F2‖Cmax, R‖

∑

Cj are investigated. Parametric uncer-
tainty is only considered which is represented by intervals. It is
assumed that values of execution times of tasks are not a priori
given, and they belong to the intervals of known bounds. No dis-
tributions additionally characterizing the uncertain parameters are
assumed. The regret is used as the basis for a criterion evaluating
the uncertainty. In a consequence, min-max regret combinatorial
problems are solved. Heuristic algorithms based on Scatter Search
are proposed. They are evaluated via computational experiments
and compared to a simple middle intervals heuristics and to exact
solutions for small instances of the problems considered.

Keywords: task scheduling, interval uncertainty, min-max re-
gret, branch and bound.

1. Introduction

Uncertain versions of optimization problems, in particular the combinatorial
optimization problems, are being developed for many decades. This concerns
also task scheduling. The term ’uncertainty’ can be understood and character-
ized in many ways and can concern diverse aspects of such problems. Moreover,
uncertainty can be differently represented and evaluated. The paper is focused
on a selected and very specific case which, however, is amply present in the lit-
erature. Investigations are limited to parametric uncertainty when exact values
of some parameters in the objective functions to be optimized are not known.
Different approaches are used to represent uncertainty, in general and for the
optimization problems, in particular, see Ayyub and Klir (2006), Klir (2006),
Bubnicki (2004) for surveys. Stochastic and fuzzy approaches are undoubtedly
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most popular. Both of them assume the existence of some distributions con-
cerning uncertain parameters in their domains, i.e.: probability distributions
and membership functions, respectively. Unfortunately, application of both ap-
proaches is often impossible or at least not recommended due to many reasons.
The most important are: scarce representative empirical data for the whole
domain of uncertainty to determine probability distributions and lack of appro-
priate credible experts to elaborate membership functions. In the paper we as-
sume that the only available information about uncertain parameters is limited
to sets of their values in the form of intervals of known bounds. Specific values
of uncertain parameters are called scenarios. Many authors used such repre-
sentation also for task scheduling, e.g. Kasperski and Zielinski (2008), Lebedev
and Averbakh (2006), Jozefczyk and Siepak (2011), or for other combinatorial
optimization problems, e.g.: Assi et al. (2005), Conde (2009), Kasperski et al.
(2013), Volgenant and Duin (2010).

Apart from the representation of uncertainty, its evaluation is a second im-
portant issue which has to be decided when solving uncertain versions of op-
timization problems. The majority of methods and techniques which can be
encountered in the literature, in fact, use criteria defined for deterministic ver-
sions and propose their different determinization (substantiation) with respect
to uncertain parameters to have the deterministic criteria as a consequence.
Mean value for the stochastic approach is a good example of the criterion after
determinization. The determinization can refer directly to criteria for determin-
istic versions or to some terms based on them. Absolute regret or equivalently
absolute opportunity loss called hereafter regret, being such an expression, is
employed in the paper to assess the uncertainty. The regret is subject to de-
terminization by the use of different corresponding operators. The notion of
’regret’ has been proposed in Savage (1951), and it was first used in manage-
ment science. Kouvelis and Yu in their seminal book (Kouvelis and Yu, 1997)
summarized previous results and indicated directions of further work in the area
of regret based methods with interval representation of uncertainty and their
application to operations research problems. Many results, both general and
particular, have been developed since that time. Let us only mention selected
works: Conde (2010), Averbakh (2000), Kasperski (2008), Aissi et al. (2009)
where some general results as well as those related to many particular opera-
tions research optimization problems are reported. Averbakh (2000) and Conde
(2010) showed the classes of easy continuous optimization problems. The re-
sults can be used for many particular applications, see e.g. Jozefczyk (2008),
Jozefczyk and Siepak (2013) where min-max regret allocation problems with
interval uncertainty are discussed. It is worth noting that majority of studies
are focused on very simple and rather easy, elementary deterministic problems,
treated as the basis for investigation of their uncertain counterparts. The au-
thors are mainly concentrated on approximate solution algorithms and on other
analytical properties of the uncertain problems, e.g. Conde (2007, 2009), Gutier-
rez et al. (1996). Due to the fact that uncertain problems are more complex
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and more difficult to solve in comparison with corresponding deterministic ver-
sions, it is obvious that expected results are possible only for basic problems far
from real-world applications. Therefore, it is extremely important to broaden
investigations on time efficient solution algorithms which could be practically
used (see Averbakh and Pereira, 2011, and Kasperski et al., 2012, where such
approach is applied). However, it is necessary to bear in mind that for many
cases heuristic algorithms the are only time efficient solution tools that can be
developed.

In the paper a class of combinatorial optimization problems is considered
which deals with the determination of integer optimization vector variables
u ∈ Du dependent on vector parameters p ∈ Dp, where Du, Dp are sets of
feasible optimization variables, parameters, respectively. Variables u are eval-
uated by a function F (p, u) undergoing minimization to get optimal variables
u′, i.e. F ′(p) = minu∈Du

F (p, u). For the uncertain counterpart considered,
it is assumed that values of every element p(i) of p belong to an interval of
known bounds, i.e. p(i) ∈

[

p(i), p(i)
]

where p(i) ≤ p(i). All intervals consti-
tute a set P of all possible scenarios for interval parameters p. The evalu-
ation function for such uncertain case is based on the regret being the dif-
ference F (p, u) − F ′(p). The worst-case with respect to unknown parameters
p is considered which leads to the following deterministic min-max problem
minu∈Du

maxp∈Dp
[F (p, u)− F ′(p)] = minu∈Du

z(u).

Three selected min-max regret task scheduling problems with interval uncer-
tainty are considered. They are uncertain counterparts of: P‖Cmax, F2‖Cmax,
R‖

∑

Cj . The first one has not been yet investigated. Some results on the
uncertain flow-shop can be found in Kouvelis et al. (2000). The latter problem
is the generalization of 1‖

∑

Cj discussed in Kasperski and Zielinski (2008). In
consecutive sub-sections of Section 2, formulations as well as the most impor-
tant properties for both deterministic and uncertain versions are presented. The
main purpose of the paper is to elaborate and analyse time efficient heuristic
solution algorithms of all three uncertain problems. The common platform for
all algorithms in the form of Scatter Search metaheuristics has been used and
presented in Section 3. In the subsequent section, results of simulation exper-
iments evaluating the heuristic algorithms are given. Final remarks complete
the paper.

2. Selected task scheduling problems

For task scheduling problems considered in this section, n tasks are assigned to m
machines. The execution time of jth task on ith machine is denoted pi,j . For the
flow-shop problems, whose example is investigated in Sub-section 2.2, execution
times pi,j refer to the execution of ith operation of jth task. All execution times
pi,j form matrix p = [pi,j ]i=1,...,m;j=1,...,n. For uncertain interval problems, it is
assumed that exact values of pi,j are not known, but they belong to intervals
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[

p
i,j
, pi,j

]

of known bounds, p
i,j
≤ pi,j . Matrix parameter p is called a scenario,

and it is an element of a set of feasible scenarios P , being the Cartesian product
of all intervals. Additionally, Cj and Cmax = maxj Cj denote the completion
time of task j and the makespan, respectively.

2.1. Problem P‖Cmax

Problem P‖Cmax consists in assigning each task to one of m parallel and identi-
cal machines. The execution time pj of jth task is machine independent. Each
machine can process maximally one task at a time. The optimal assignment
minimizes the makespan which is the execution time of a machine working the
longest. The order of tasks executed on each machine is arbitrary, as it does not
affect the quality criterion. Let us denote by c = [ci,j ]i=1,...,m;j=1,...,n the binary
assignment matrix such that ci,j = 1 if jth task is scheduled on ith machine,
and 0, otherwise. The set Dc specifies the constraints which have to be fulfilled
by any feasible solution c:

Dc =

{

ci,j ∈ {0, 1} : ∀j = 1, 2, . . . , n

m
∑

i=1

ci,j = 1

}

. (1)

The makespan can be expressed analytically as F1(p, c) = maxi=1,...,m

∑n
j=1 pjci,j .

Then, problem P‖Cmax deals with the determination of such a matrix c, fea-
sible with respect to Dc, that minimizes F1(p, c), i.e. F

′

1(p) , F1(p, c
′

) ,
minc∈Dc

maxi=1,...,m

∑n
j=1 pjci,j .

For the uncertain P‖Cmax, the processing times of tasks are assumed to be

imprecise, i.e. pj ∈
[

p
j
, pj

]

. The worst-case regret, being the objective function

for this version of the problem, takes the form z1(c) = maxp∈P

[

F1(p, c)− F
′

1(p)
]

=

F1(p
c, c)−F

′

1(p
c) where pc is the worst-case scenario for a given assignment ma-

trix c. The optimal solution c∗ ∈ Dc minimizes the value of z1. According to
our best knowledge, this uncertain problem has not been yet investigated.
The deterministic version of P‖Cmax is NP-hard as shown in Garey and John-
son (1978). The popular approximate algorithm for solving this problem is the
LPT rule (see, e.g. Pinedo, 2008). The complexity of P‖Cmax implies directly
the NP-hardness of its uncertain counterpart for which the following property
is satisfied:

Property 2.1 : NP-hardness of P‖Cmax implies impossibility of developing

any polynomial approximation algorithm for the uncertain version of this prob-

lem.

Proof: Let c∗ be the optimal solution for the uncertain problem and let us as-
sume that a k-approximation algorithm exists (k > 1), which returns solution ĉ
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such that z1(ĉ) ≤ kz1(ĉ). Such an approximation algorithm could be applied to
the deterministic problem, where ∀j p

j
= pj , and must return then solution

ĉ such that z1(ĉ) = 0. Matrix ĉ must be, therefore, the optimal solution for
P‖Cmax, which is not possible if P 6= NP.

NP-hardness of the uncertain P‖Cmax causes also that it is not possible to
calculate efficiently the exact value of F

′

1(p
c), required to have z1(c) for a given

c. Therefore, z1,LB and z1,UB, being the lower and the upper bounds of z1
are obtained instead. Let us denote by cpmtn and cLPT the approximate solu-
tions of P‖Cmax relaxed by allowing tasks preemption and applying LPT rule,
respectively. To calculate z1,LB and z1,UB, the following procedure is applied
(Jozefczyk and Siepak, 2011):

Algorithm 1: Lower and upper bounds calculation

Data: Input solution c.
Result: Lower bound z1,LB and upper bound z1,UB of the worst-case

regret z1.
1 Fix p = [p1, . . . , pn]. For p find index r of the executor that works the

longest, i.e. r = argmaxi=1,...,m

∑n
j=1 pjcij .

2 Obtain the worst-case scenario pc = [pc1, . . . , p
c
n] such that pcj = pj,

j = 1, 2, . . . , n when cr,j = 1 and pcj = p
j
, otherwise.

3 For pc solve the deterministic problem P‖Cmax by applying LPT rule and
obtain F1(p

c, cLPT).
4 Calculate F1,pmtn(p

c) = 1
m

∑n
j=1 p

c
j .

5 Calculate z1,LB(c) = F1(p
c, c)− F1(p

c, cLPT) and
z1,UB(c) = F1(p

c, c)− F1,pmtn(p
c).

6 return z1,LB, z1,UB.

2.2. Problem F2‖Cmax

Considerations in this section refer to preliminary results given in Kouvelis et
al. (2000). It is assumed that m = 2 dedicated machines and a set of n tasks are
given where each task consists of two operations. The ith operation of each task
needs to be performed on the ith machine (i = 1, 2) and the second operation
of task j cannot start until the first operation is completed. Each machine is
allowed to perform maximally one operation at each time moment. The objec-
tive is to find the schedule which minimizes the makespan. The optimization
variables are elements of permutation σ = (σ1, . . . , σn) ∈ Φ which specifies the
task schedule, i.e. σj is the number of task performed at the jth position of
permutation, where Φ is the set of all feasible permutations. Matrix p contains
now two rows. The value of objective function F2(p, σ), which for given p and σ
expresses the makespan, is the completion time moment of the second operation
of task σn, i.e.

F2(p, σ) = C2,σn
(p). (2)
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We denote by Ci,σj
the completion time of ith operation of task σj . The value

of Ci,σj
can be expressed by the following set of equations Pinedo, (2008):

Ci,σ1
(p) =

i
∑

k=1

pk,σ1
, i = 1, 2, (3)

C1,σj
(p) =

j
∑

k=1

p1,σk
, j = 1, . . . , n, (4)

C2,σj
(p) = max

(

C2,σj−1
, C1,σj

)

+ p2,σj
, j = 2, . . . , n. (5)

The following constraints are imposed on the optimization variables:

∀j σj ∈ {1, . . . , n} ∧ ∀j 6= k σj 6= σk. (6)

The deterministic problem deals with the minimization of F2, with respect to
σ, i.e.

F
′

2(p) , F2(p, σ
′

) = min
σ∈Φ

F2(p, σ). (7)

This problem is polynomially solvable and the optimal solution can be obtained
using Johnson’s algorithm (Johnson, 1954).

For the uncertain version of F2‖Cmax, pi,j ∈
[

p
i,j
, pi,j

]

. The optimal

schedule σ∗ minimizes the value of z2(σ) = maxp∈P

[

F2(p, σ)− F
′

2(p)
]

, i.e.

z∗2 , z2(σ
∗) = minσ∈Φ z2(σ). The uncertain version of F2‖Cmax is NP-hard

(Kouvelis et al., 2000).

2.3. Problem R‖
∑

Cj

The task scheduling problem R‖
∑

Cj deals with the scheduling of n indepen-
dent tasks on m parallel and unrelated machines to minimize the sum of com-
pletion times

∑

Cj . The solution of the problem can be characterized by matrix
of binary optimization variables x = [xi,k,j ]i=1,...,m;j,k=1,...,n, where xi,k,j = 1
if jth task is scheduled on machine i as kth to the last, and 0, otherwise. For
given scenario p, being now the m rows matrix, the criterion is expressed as
follows

F3(p, x) =

m
∑

i=1

n
∑

j=1

n
∑

k=1

kpi,jxi,k,j . (8)

The following constrains are imposed on optimization variables xi,k,j . Each task
can be performed on exactly one position of exactly one machine

m
∑

i=1

n
∑

k=1

xi,k,j = 1, j = 1, 2, . . . , n. (9)
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At most one task can be performed on each position of each machine

n
∑

j=1

xi,k,j ≤ 1, i = 1, 2, . . . ,m, k = 1, 2, . . . , n. (10)

The elements of matrix x are binary optimization variables

xi,k,j ∈ {0, 1} , i = 1, 2, . . . ,m, j, k = 1, 2, . . . , n. (11)

The deterministic problem deals with the minimization of F3 with respect to x
subject to constraints (9), (10) and (11), i.e. F

′

3(p) , F3(p, x
′

) = minx F3(p, x).

For the uncertain R‖
∑

Cj , i.e. when pi,j ∈
[

p
i,j
, pi,j

]

, the worst-case re-

gret takes the following form: z3(x) = maxp∈P

[

F3(p, x)− F
′

3(p)
]

= F3(p
x, x)−

F
′

3(p
x), where px is the worst-case scenario for a feasible solution x. The optimal

solution x∗ minimizes z3 with respect to (9), (10) and (11). Results presented
in this sub-section are generalizations of similar outcomes obtained for 1‖

∑

Cj

and presented in Kasperski and Zielinski (2008).

Problem R‖
∑

Cj is equivalent to the weighted bipartite assignment prob-
lem, see Pinedo (2008), polynomially solvable by the Hungarian algorithm (Jung-
nickel, 2008). The uncertain version of R‖

∑

Cj is NP-hard which results from
the NP-hardness of the uncertain version of 1‖

∑

Cj (Lebedev and Averbakh,
2006). We will show now how to calculate the worst-case scenario px and regret
z3(x) for a given solution x. Let us notice that considering (8) the criterion for
the uncertain problem can be expressed by the following equation:

z3(x) =

m
∑

i=1

n
∑

j=1

n
∑

k=1

(

kpxi,jxi,k,j − kpxi,jx
′

i,k,j

)

. (12)

For any solution y, let kyj and iyj denote, respectively, the index of position before
the last one and the machine on which task j is scheduled, i.e. yiy

j
,k

y

j
,j = 1.

Therefore, the regret can be rewritten as:

z3(x) =
n
∑

j=1

(

kxj p
x
ix
j
,j − kx

′

j px
ix

′

j
,j

)

(13)

where kxj and ixj are known for a given solution x. It is easy to see that if

ixj 6= ix
′

j , then we can increase the processing time pxix
j
,j to pix

j
,j and decrease

px
ix

′

j
,j

to p
ix

′

j
,j
. Otherwise, i.e. for ixj = ix

′

j , the execution time of task j de-

pends on the indexes of positions before the last one where it is scheduled in x

and x
′

, i.e. pxix
j
,j = px

ix
′

j
,j
= pix

j
,j if kxj > kx

′

j and pxix
j
,j = px

ix
′

j
,j
= p

ix
j
,j

if kxi ≤ kx
′

i .
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Consequently, we can now express the regret for x as:

z3(x) =
∑

{

j:ixj 6=ix
′

j

}

(

kxj pix
j
,j − kx

′

j p
ix

′

j
,j

)

+
∑

{

j:ix
j
=ix

′

j
∧kx

j
>kx

′

j

}

(

kxj pixj ,j − kx
′

j p
ix

′

j
,j

)

+
∑

{

j:ix
j
=ix

′

j
∧kx

j
≤kx

′

j

}

(

kxj pix
j
,j
− kx

′

j p
ix

′

j
,j

)

. (14)

Observe that the worst-case scenario can be immediately obtained from (14)

if we know x
′

, which, as a result, would allow us to know kx
′

j and ix
′

j . We

show now that the computation of x
′

can be done by solving weighted bipartite
matching problem.

Let us define binary variables zi,k,j ∈ {0, 1}, i = 1, . . . ,m; j, k = 1, . . . , n,

where zi,k,j takes 1 only if k = kx
′

j and i = ix
′

j , that is, task j is scheduled

as the kth to the last on machine i in solution x
′

. Since each task has to be
scheduled on exactly one position of exactly one machine, and each position on
each machine is taken by at most one task, variables zi,k,j fulfil the following
requirements

m
∑

i=1

n
∑

k=1

zi,k,j = 1; j = 1, . . . , n, (15)

n
∑

j=1

zi,k,j 6 1; i = 1, . . . ,m; k = 1, . . . , n, (16)

zi,k,j ∈ {0, 1} , i = 1, . . . ,m; j, k = 1, . . . , n. (17)

The regret (14) can be now rewritten as:

z3(x) = max
zi,k,j

m
∑

i=1

n
∑

j=1

n
∑

k=1

(

kxj p
x
ix
j
,j − kpxi,j

)

zi,k,j

= max
zi,k,j

m
∑

i=1

n
∑

j=1

n
∑

k=1

cxi,k,jzi,k,j (18)

where maximization is taken with respect to all zi,k,j fulfilling (15), (16), (17),
and cxi,k,j are fixed coefficients having the following form:

cxi,k,j =











kxj pixj ,j − kp
i,j

if ixj 6= i,

kxj pixj ,j − kpi,j if ixj = i ∧ kxj > k,

kxj pix
j
,j
− kp

i,j
if ixj = i ∧ kxj ≤ k.

(19)
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The problem of maximization in (18) s.t. (15) — (17) is the weighted bipartite
assignment problem with n tasks and mn positions and can be solved in a
polynomial time using the well known Hungarian algorithm, which returns the
solution z

′

i,k,j . Then, the absolute regret z3 is calculated using the formula:

z3(x) =

m
∑

i=1

n
∑

j=1

n
∑

k=1

cxi,k,jz
′

i,k,j (20)

where cxi,k,j is determined according to (19). Observe that knowledge of x
′

allows us to determine the individual values pxi,j of the matrix representing the
worst-case scenario px.

3. Scatter Search based solution algorithms

Scatter Search is an evolutionary method, which has been successfully applied
to hard optimization problems, see, e.g. Corberan et al. (2002), Nowicki and
Smutnicki (2006), Jozefczyk and Siepak (2001), Xu et al. (2001). The funda-
mental concepts of this method were first proposed in the 1970s and were based
on formulations for combining decision rules and problem constraints; however,
its current state was described in Glover (1997), see also Glover, Laguna and
Marti (2000). This algorithm uses strategies for search diversification and in-
tensification in order to avoid stopping at local optima. The quality of each
solution is based on its objective function value and is also characterized by the
value of the diversity measure which is specified for the problem. Five separate
subprocedures can be distinguished within the Scatter Search basic algorithm
(Laguna and Marti, 2003):

A. Diversification Generation Method generates a collection of MSize initial
high diversity solutions, which allows for analyzing different points of solu-
tion space. The solutions generated do not necessarily need to be feasible.

B. Improvement Method transforms (if necessary) the input solution in order to
fulfil the feasibility conditions and uses local search algorithms for improving
solution quality. If the original input solution is feasible and no improvement
was achieved, then this solution is returned as a result.

C. Reference Set Update Method updates and maintains the reference set RefSet
which contains solutions particularly valuable for the purpose of the opti-
mum solution exploration and to avoid stopping of the algorithm at local
optima. This set consists of at most b1 high quality solutions and at most
b2 high diversity solutions. At a single iteration of the Scatter Search pro-
cedure, a set of so called candidate solutions is generated, each of these
solutions being verified whether it can be added to RefSet. The verification
process requires defining problem specific method of obtaining the distance
d(x, y) between two candidate solutions x and y. The value of d is calcu-
lated between the candidate solution and each solution in the RefSet. The
smallest d found determines the distance between the candidate solution x
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and RefSet and is calculated according to the formula:

d̃(x,RefSet) = min
i=1,...,|RefSet|

d(x, si) (21)

where si is the ith solution in the RefSet. Each of the solutions added
to this set is marked as high quality solution or high diversity solution.
The Reference Set Update Method is presented as Algorithm 2, where it is
assumed that we are dealing with the problem of minimization, and z(x) is
the value of the objective function z for a given solution x.
Algorithm 2 consists of 3 conditions. If any of them is fulfilled, then the
candidate solution x is automatically added to RefSet:
Condition 1: Is a number of high quality solution in RefSet lower than b1?
Condition 2: Is the quality of x better than the quality of the worst solution
in RefSet marked as the high quality solution?
Condition 3: Is the diversity of x higher than the diversity of the least diverse
solution in RefSet marked as the high diversity solution?

D. Subset Generation Method produces all r-element subsets of RefSet where
r is the input parameter of the procedure. In most of practical cases it is
assumed that r = 2 which means that the total number of subsets equals
0.5(b2 − b) where b = b1 + b2.

E. Solution Combination Method combines all input solutions and generates
the new output solution as a result.

Scatter Search heuristics consists of five above subprocedures which are called for
iteratively. Adaptation of this algorithm to solve specific optimization problem
requires adjusting its subprocedures in order to take into consideration prob-
lem properties. It is noteworthy that the Subset Generation Method is generally
problem independent and the Reference Set Update Method only requires defin-
ing distance d between two problem solutions x and y. All other subprocedures
are problem specific and have to be fully adapted to the properties of a problem.
The general Scatter Search procedure introduced in Laguna and Marti (2003)
is presented as Algorithm 3.
It is easy to see that its duration depends significantly on the number of rep-
etitions of the while loop in Line 11. The algorithm stops when the RefSet
has not been updated at least once while executing the loop in Lines 14—22,
because none of the solutions obtained as a result of using Combination and
Improvement Methods (Line 16) was of higher quality or higher diversity than
any of the RefSet solutions. The highest quality solution of RefSet is then re-
turned as a result. Additionally, one can set a time restriction for the algorithm
which would end the loop in Line 11 after the predefined period of time, being
an input parameter of the procedure.
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Algorithm 2: Reference Set Update method

Data: Current set of reference solutions RefSet, candidate solution x to
RefSet, L and R — current number of solutions marked as high
quality and high diversity solutions, respectively.

Result: Updated set of reference solutions RefSet.
1 Generate vector s = [s1, . . . , sL] in RefSet marked as high quality

solutions. Sort s non-descending according to the value of z.
2 if L < b1 then

3 Add x to RefSet and mark x as high quality solution.
4 return RefSet.

5 else if z(x) < z(sL) then

6 Remove solution sL from RefSet.
7 Add x to RefSet and mark x as high quality solution.
8 return RefSet.

9 else

10 Generate vector s = [s1, . . . , sR] in RefSet marked as high diversity
solutions. Sort s non-ascending according to the value of
d̃(si, RefSet), i = 1, . . . , R.

11 if d̃(x,RefSet) > d̃(sR, RefSet) then

12 if R equals b2 then

13 Remove task sR from RefSet.
14 end

15 Add x to RefSet and mark x as high diversity solution.

16 end

17 end

18 return RefSet.



678 J. Józefczyk, M. Siepak

Algorithm 3: General Scatter Search scheme

Data: b1, b2, MSize, r.
Result: xbest — the highest quality solution found in RefSet.
Auxiliary variables: M = φ — set of initial solutions, SubSet — set of
all r-element subsets of RefSet, IsRefSetUpdated — boolean variable
specifying whether RefSet has been updated.

1 while |M | < MSize do

2 Use Diversification Generation Method to construct an initial solution
x and apply Improvement Method to get the improved solution y as a
result.

3 if y /∈M then

4 Add y to M .
5 end

6 end

7 while |RefSet| < b do

8 Use the Reference Set Update Method trying to add the consecutive
solution y of set M to RefSet.

9 end

10 IsRefSetUpdated = true
11 while IsRefSetUpdated do

12 IsRefSetUpdated = false
13 Use Subset Generation Method in order to obtain SubSet.
14 while |SubSet| > 0 do

15 Get the consecutive element s of SubSet.
16 Apply the Combination Method to s and generate the new trial

solution x. Apply the Improvement Method to x to get the
improved solution y as a result.

17 Use the Reference Set Update Method for y as the candidate
solution.

18 if y was added to RefSet then

19 IsRefSetUpdated = true
20 end

21 Remove s from SubSet.

22 end

23 end

24 return xbest ∈ RefSet.

3.1. Uncertain version of P‖Cmax

In this sub-section, we present how Scatter Search subprocedures were adapted
to the uncertain version of P‖Cmax. Diversification Generation Method is an
iterative subprocedure which uses sequence s of tasks non-assigned yet to any of
the machines. Its pseudo-code is presented as Algorithm 4. In ith iteration of
this algorithm, value of the auxiliary parameter k is randomly selected from the
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set {2, 3, . . . , ⌊n/2⌋}. Then, all tasks, with indexes corresponding to every kth
element of the sequence s, are assigned for processing on machine i and their
indexes are removed from s. The procedure ends its execution in mth iteration
by assigning all unallocated tasks to mth machine.

Algorithm 4: Diversification Generation method for uncertain P‖Cmax

Data: m, n.

Result: c — generated diverse solution.

Auxiliary variables: s = (s1, . . . , sL), k.

1 Generate zero matrix c = [ci,j ]i=1,...,m;j=1,...,n
.

2 Generate sequence s = (1, . . . , n).
3 for i← 1 to m− 1 do

4 Select randomly the value of k from set {2, 3, . . . , ⌊n/2⌋}.
5 for j ← L down to 1 do

6 if (j − 1) mod k equals 0 then

7 ci,sj = 1.
8 Remove jth element of sequence s.

9 end

10 end

11 end

12 for j ← 1 to L do

13 cI,sj = 1.
14 end

15 return c.

Algorithm 5: Improvement method for uncertain P‖Cmax

Data: c, m.

Result: c — improved solution.

Auxiliary variables: w = (1, . . . ,m), Li — number of tasks assigned to

machine i.
1 For given solution c, generate the worst-case scenario pc.
2 Sort elements of w non-ascending according to the sum of task execution times

on each machine.

3 for i← 1 to ⌊m/2⌋ do

4 for j ← 1 to Lwi
do

5 Generate temporary solution c̃ by moving the shortest execution time

task scheduled on machine wi to machine wm−i+1.

6 if z1,UB(c̃) < z1,LB(c) then

7 c = c̃.
8 For given solution c, generate the worst-case scenario pc.

9 end

10 end

11 end

12 return c.

Improvement Method presented as Algorithm 5 tries to improve iteratively
the quality of input solution c. The procedure starts by obtaining the worst-case
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scenario pc and a sequence w of machine indexes sorted non-ascending according
to the sum of execution times of tasks performed on each machine. In iteration i
(i = 1, . . . , ⌊m/2⌋), a temporary solution c̃ is generated by moving the shortest
execution time task performed on machine wi to machine wm−i+1. If upper
bound of z for solution c̃ is smaller than the lower bound of z for c, then a new
improved solution was found, which is marked as the current solution, i.e. c = c̃,
and the new worst-case scenario pc is calculated. The algorithm terminates af-
ter analyzing all tasks assigned to the first ⌊m/2⌋ machines of sequence w. The
improved solution c is returned as a result.

In Reference Set Update Method, the distance between any two input solu-
tions c

′

and c
′′

is defined as a sum of the absolute differences between values of
c
′

i,j and c
′′

i,j , i.e.

d
(

c
′

, c
′′

)

=

m
∑

i=1

n
∑

j=1

∣

∣

∣
c
′

i,j − c
′′

i,j

∣

∣

∣
. (22)

Apart from defining the distance between two input solutions, this procedure
is problem independent and works according to the scheme presented as Algo-
rithm 2.

Solution Combination Method combines two input solutions c
′

, c
′′

and gen-
erates the new output solution ĉ as a result. This procedure extends the results
presented in Laguna and Marti (2003). It starts from generating zero matrix
ĉ and a sequence s = (sj)j=1 , . . . ,n = (1, . . . , n) of tasks not assigned yet to
any of machines. At ith iteration this algorithm tries to assign selected tasks of
sequence s to machine i. The selection occurs by calculating for each element
sj the following score

ς (i, sj) =
z1,UB

(

c
′

)

c
′

i,sj
+ z1,UB

(

c
′′

)

c
′′

i,sj

z1,UB (c′) + z1,UB (c′′)
, (23)

and by randomly selecting the value of an auxiliary parameter ρ ∈ [0, 1] ac-
cording to the uniform probability distribution. If ρ < ς (i, sj), then task j is
assigned to machine i, otherwise such assignment is not performed, i.e.

ĉi,sj =

{

1, when ρ < ς (i, sj) ,
0, otherwise.

(24)

All unallocated tasks in mth iteration are automatically assigned to machine
m. The pseudocode of this procedure is presented as Algorithm 6.
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Algorithm 6: Solution Combination method for uncertain P‖Cmax

Data: c
′

, c
′′

.
Result: ĉ — output combined solution.
Auxiliary variables: s = (sj)j=1,...,L = (1, . . . , n).

1 Generate zero matrix ĉ = [ĉl,r]l=1,...,m;r=1,...,n

2 for i← 1 to m− 1 do

3 for j ← L down to 1 do

4 Calculate ς (i, sj) according to (23).
5 Select randomly ρ ∈ [0, 1].
6 if ς (i, sj) > ρ then

7 ĉi,sj = 1.
8 Remove jth element of sequence s.

9 end

10 end

11 end

12 for j ← 1 to L do

13 ĉm,sj = 1.
14 end

15 return ĉ.

3.2. Uncertain version of F2‖Cmax

Scatter Search subprocedures to the uncertain F2‖Cmax is presented in this
sub-section. Diversification Generation Method is an iterative procedure which
in jth iteration randomly selects one of the unallocated tasks and assigns it to
jth position of permutation σ (Algorithm 7).

Algorithm 7: Diversification Generation method for uncertain F2‖Cmax

Data: n.
Result: σ — generated diverse solution.

1 Generate permutation σ = (σ1, . . . , σn) = (0, . . . , 0).
2 for j ← 1 to n do

3 Assign one of randomly selected unallocated tasks to position σj .
4 end

5 return σ.

Improvement Method, presented as Algorithm 8, iteratively tries to swap
positions occupied by each pair of tasks and checks whether this improves the
value of the regret. Algorithm terminates after analyzing all pairs of tasks.

In Reference Set Update Method, the distance between any two input solu-
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tions σ and δ is defined according to the following formula:

d (σ, δ) =
n
∑

j=1

|jσ − jδ|, (25)

where for any feasible input solution γ, the value of jγ determines the position
occupied by jth task in γ.

Algorithm 8: Improvement method for uncertain F2‖Cmax

Data: σ — input solution.
Result: σ — improved solution.

1 for j ← 1 to n do

2 for w ← (j + 1) to n do

3 Generate permutation σ̃ by iteratively swapping task σj with task
σw.

4 if z2 (σ̃) < z2 (σ) then

5 σ = σ̃.
6 end

7 end

8 end

9 return σ.

Solution Combination Method generates iteratively permutation (ǫ = ǫ1
. . . , ǫn) which is a result of combination of two input solutions σ = (σ1, . . . , σn)
and σ = (σ1, . . . , σn). In jth iteration of this procedure, one of the still unallo-
cated tasks corresponding to jth position of either schedule σ or δ is assigned
to position j of solution ǫ. In order to specify the exact task index for the
assignment, parameter ρ is introduced with value randomly generated from the
interval [0, 1] according to the uniform probability distribution. If ρ > 0.5, then
checking is performed whether task σj has already been allocated to any of po-
sitions 1, . . . , j − 1 of permutation ǫ. If such an allocation was not performed
before, then ǫj = σj . Otherwise, i.e. if task σj has been already allocated
before in any of the previous positions of solution ǫ, then a similar checking is
performed in order to determine whether task δj has been already allocated to
any of positions 1, . . . , j − 1 of permutation ǫ. The lack of such an assignment
causes performing allocation of task δj into solution at jth position of solution
ǫ. If both tasks σj and δj have been already assigned in the previous positions
of ǫ, then ǫj is left unallocated and the procedure proceeds to iteration j+1. In
case when ρ < 0.5, the procedure works analogously, but ǫj = δj is attempted to
be performed first, and if that violates the constrains, then ǫj = σj is checked.
If both tasks δj and σj have been previously assigned, then the algorithm pro-
ceeds to the next iteration. After processing n iterations, all unassigned tasks
are randomly allocated to the unassigned positions of ǫ. The pseudocode of this
procedure is presented as Algorithm 9.
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Algorithm 9: Solution Combination method for uncertain F2‖Cmax

Data: δ σ.
Result: ǫ — output combined solution
Auxiliary variables: x, y, ρ.

1 for j ← 1 to n do

2 Select randomly ρ ∈ [0, 1].
3 x = y = 0.
4 if ρ > 0.5 then

5 x = σj , y = δj .
6 else

7 x = δj , y = σj .
8 end

9 if task x has not been assigned to ǫ in any of previous iterations
then

10 ǫj = x.
11 else

12 ǫj = y.
13 end

14 end

15 Randomly allocate all unassigned yet tasks to unallocated positions of ǫ.
16 return ǫ.

3.3. Uncertain version of R‖
∑

Cj

In this sub-section, we present how Scatter Search subprocedures were adapted
to the uncertain version of R‖

∑

Cj . Diversification Generation Method gen-
erates a feasible solution x by randomly assigning tasks to machines and then
randomly ordering tasks performed on each machine. The computational exper-
iments performed showed that Scatter Search returns solutions of better quality
when using the random procedure for generating input solutions rather than
any of the tested deterministic methods.

Algorithm 10: Diversification Generation method for uncertain R‖
∑

Cj

Data: m, n.

Result: x — generated diverse solutions.

1 for j ← 1 to n do

2 Assign jth task to the randomly selected machine index i = 1, . . . ,m
according to the uniform probability distribution.

3 end

4 for i← 1 to m do

5 Randomly order tasks assigned to ith machine according to the uniform

probability distribution.

6 end

7 Transform obtained solution to fulfil Property 3.1.

8 return x.
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Algorithm 11: Improvement method for uncertain R‖
∑

Cj

Data: x, m, t.
Result: x — improved solution.

Auxiliary variables: w = (wi), i = 1, . . . ,m, kwi
, x̃, x̂.

1 Generate the sequence of machines w = (wi), i = 1, . . . ,m and sort it

non-ascending according to the sum of tasks completion times on each machine.

2 for i← 1 to ⌊m/2⌋ do

3 Obtain the total number of task kwi
assigned to machine wi.

4 for k ← 1 to kwi
do

5 Generate temporary solution x̃ obtained by moving task performed as

kth to the last on machine wi and scheduling it as the last one on

machine wm−i+1.

6 if z3 (x̃) < z3 (x) then

7 x = x̃.

8 else

9 Generate temporary solution x̂ by ordering tasks in x̃

non-descending according to the worst-case scenario px̃.
10 if z3 (x̂) < z3 (x) then

11 x = x̂.

12 i = 1.
13 if current execution time > t then

14 return x.

15 end

16 Go to Line 1.

17 end

18 end

19 end

20 end

21 return x.

The initial schedule generated is modified at the end of the procedure in
order to fulfil the following property, which improves the total completion time
value and is true for each optimal solution (e.g. Pinedo, 2008):

Property 3.1 : If task j is assigned to position k > 1 on machine i, then

there is also a task assigned to position k− 1 on the same machine. Otherwise,

scheduling task j on position k − 1 would improve the total assignment cost.

The pseudo-code for the Diversification Generation Method is presented as
Algorithm 10.

Improvement Method tries to improve input solution x by moving tasks be-
tween machines and by changing the execution order of tasks on each machine.
The procedure starts by generating a sequence w = (w1, . . . , wm) of machine
indexes and sorting it non-ascending according to the sum of task completion
times on each machine. Then, machines corresponding to the first ⌊m/2⌋ el-
ements of m are analyzed iteratively. For machine wi, i = 1, . . . , ⌊m/2⌋, the
procedure determines kwi

, which is the total number of tasks assigned to wi
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and then iteratively generates temporary solution x̃ by moving the task per-
formed there as kth to the last (k = 1, . . . , kwi

) and scheduling it as the last one
on machine wm−i+1. If the quality of x̃ is better than of x, then the new tempo-
rary solution becomes the best solution currently found (i.e. x = x̃). Otherwise,
the tasks on each machine are sorted non-descending to px̃, which gives new so-
lution x̂. If z3 (x̂) < z3 (x), then x̂ is marked as the new best solution found,
i.e. x = x̂, and the procedure starts again by going to Line 1. The algorithm
terminates when analysis of the first ⌊m/2⌋ machines of the sequence w did not
produce any improved solution during any of the improvement attempts. An
alternative stop condition for the procedure is the execution time limit t (being
the input parameter), exceeding of which causes automatically the termination
of procedure and returning the best solution found as a result. The scheme of
this algorithm is presented as Algorithm 11.

Algorithm 12: Solution Combination method for uncertain R‖
∑

Cj

Data: x, y.
Result: v — combined output solution.

1 for j ← 1 to n do

2 ivj = ⌊0.5
(

ixj + iyj
)

⌋.

3 kvj = ⌊0.5
(

kxj + kyj
)

⌋.

4 if position kvj on machine ivj is free then

5 viv
j
,kv

j
,j = 1.

6 else

7 Find the closest available position to kvj on machine ivj and assign
there jth task.

8 end

9 end

10 Modify v in order to fulfil Property 3.1.
11 return v.

In Reference Set Update Method, the distance between any two input solu-
tions x and y is defined as the sum of the absolute differences between values
of xi,k,j and yi,k,j , i.e.

d (x, y) =
m
∑

i=1

n
∑

j=1

n
∑

k=1

|xi,k,j − yi,k,j |. (26)

Solution Combination Method generates a new solution v =
[vi,k,j ]i=1,...,m;j,k=1,...,n, which is the result of combination of input solutions
x and y. Let kwj and iwj denote respectively the index of position to the last
and the machine index, where task j is scheduled on, in a given solution w, i.e.
wiu

j
,ku

j
,j = 1. In the jth iteration of the algorithm, task j is assigned to machine

ivj , whose index is the arithmetic average of machine indices, where task j is
scheduled in solutions x and y. The position kvj , where task j is going to be
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performed on machine ivj , is also the arithmetic average of the positions, where
this task is performed on, in x and y. If position kvj on machine ivj is already
occupied by any other task, then the algorithm looks for the closest available
position index on this machine and assigns there the jth task. At the end, the
solution generated is modified in order to fulfil Property 3.1. The pseudo-code
describing this procedure is presented as Algorithm 12.

4. Computational experiments

The proposed Scatter Search (SS) algorithms were experimentally evaluated
in terms of their quality and execution times. Exact algorithms (EX) based
on a simple enumeration, tested for small data instances, as well as Middle
Interval algorithms (MI) serve as the basis for evaluation. The latter algo-
rithms consist in determining the middle intervals scenarios pmid such that

pmid
i,j = 0.5

(

p
i,j

+ pi,j

)

or pmid
j = 0.5

(

p
j
+ pj

)

and then in solving the result-

ing deterministic problems for pmid using Hungarian algorithm for R‖
∑

Cj ,
Johnson’s algorithm for F2‖Cmax or LPT rule for P‖Cmax. For the uncertain
F2‖Cmax and R‖

∑

Cj , such algorithms keep the property of 2-approximation
according to criteria z2 and z3, respectively. For the uncertain P‖Cmax, this is
an heuristic procedure.

Due to the lack of benchmark test data instances, a method of generating
bounds of the interval execution times was proposed. The parameter C ∈ N was
introduced and the values of p

i,j
(or p

j
for the uncertain version of P‖Cmax) and

pi,j (or pj) were selected randomly according to the uniform distribution within

intervals [0, C] and
[

p
i,j
, p

i,j
+ C

]

(or
[

p
j
, p

j
+ C

]

), respectively. Parameter

C determines the maximum range of intervals where the uncertain parameters
belong to. Therefore, it can be treated as the numerical characteristics of un-
certainty.

For each problem, the test data instances were generated,
i.e. n ∈ {10, 20, 50, 100}, m = 5 for both the uncertain P‖Cmax and R‖

∑

Cj

as well as n ∈ {9, 11, 13, 80, 120, 160} for the uncertain F2‖Cmax. Moreover,
first two problems were additionally solved for n = 10, m = 2 where SS
and MI were compared with EX. All experiments were performed for C ∈
{10, 30, 50, 70, 100, 150}. For each configuration of C, m, n, a single problem in-
stance of the problem was generated. SS was repeated 5 times for each instance
due to the randomness of Diversification Generation Method and Combination
Method procedures. All execution times of algorithms launched in the experi-
ments are expressed in seconds.

Let uMI, ũmax and ũmin be MI solution, SS best and SS worst quality so-
lutions, respectively. The following general performance indices were proposed
to evaluate the relative percentage difference between SS and MI for the worst
and the best results generated by SS, respectively, i.e.:
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δmax = z(uMI)−z(ũmax)
z(ũmax)

· 100% which expresses, for a given problem instance, how

much, the quality of uMI is worse than the worst quality solution ũmax generated
by SS,

δmin = z(uMI)−z(ũmin)
z(ũmin)

· 100% which expresses, for a given problem instance, how

much the quality of uMI is worse than the best quality solution ũmin generated
by SS,
and decisions specific for every particular problem considered stand for uMI,

ũmax and ũmin. Similar general performance index γ (u) = z(u)−z(u∗)
z(u∗) · 100% was

proposed for small problem instances to compare solution u with optimal solu-
tion u∗.

Tables 1–19 present the results of computational experiments for all three
problems. Column C denotes the value of parameter C. Symbols TEX, TMI and
Tavg denote the execution times of EX, MI and the average execution times of
SS, while running it 5 times, respectively. In order to simplify the presentation,
all values of the regret criteria are rounded to the nearest integer.

4.1. Uncertain version of P‖Cmax

As a result of tuning the parameters of SS, we assumed MSize = 50, b1 = 5,
b2 = 5. The results of computational experiments are presented in Tables 1–
6. Columns z1,UB (c̃min), z1,UB (c̃avg) and z1,UB (c̃max), denote, respectively,
the minimum, the average and the maximum value of the upper bound of
z1. Moreover, z1,LB (cMI) expresses lower bound of z1 obtained for the so-
lution cMI generated by MI. For small instances of the problem, the exact
value of z1, presented in z1 (c

∗) column, was calculated for the optimal so-
lution c∗. The performance indices have now the following particular forms:

δ1,max =
z1,LB(cMI)−z1,UB(c̃max)

z1,UB(c̃max)
· 100%,

δ1,min =
z1,LB(cMI)−z1,UB(c̃min)

z1,UB(c̃min)
· 100%,

γ1 (c) =
z1(c)−z1(c

∗)
z1(c∗)

· 100% where c ∈ {c̃min, c̃max, cMI}.

The results for n = 10, m = 2 (Table 5) show that the lowest quality SS
solutions are at most by 8.8% worse than the corresponding optimal solutions,
while the highest quality SS solutions are worse than the corresponding opti-
mal ones by not more than 2.6%, which is expressed by γ1 (c̃min) and γ1 (c̃max),
respectively. MI solutions are at least by 33.9% worse than the optimal ones,
which is reported by γ1 (cMI). Both heuristics work fast. It is easy to see that all
solutions generated by SS are better than the corresponding MI solutions. The
maximum obtained value of both δ1,max and δ1,min equals 66.7% (for n = 10,
C = 10). The average values of δ1,max and δ1,min, i.e. δ1,max,avg and δ1,min,avg for
m = 5 and n = 10, 20, 50, 100 are presented in Table 6. General corollary holds
that the increase of number of tasks n leads to the decrease of both δ1,max,avg

and δ1,min,avg. The results confirm also the low sensitivity of indices δ1,max and
δ1,min to changes of parameter C. This can be explained by the similar change
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rate of z1, while increasing C for both SS and MI.

Execution times of SS even for the largest tested problem instance do not
exceed 0.79 (Table 4: n = 100, m = 5, C = 150). Corresponding times of
MI are less than 0.01 for all tested problem instances. Thus, we recommend
applying SS for all cases, apart from the case when the generation of solutions
is time critical. Then, we suggest using MI, whose execution times are smaller
than 0.01 for all tested problem instances.

Table 1. Results of SS and MI for n = 10, m = 5.

C
SS MI

δ1,max δ1,min
Tavg z1 (c̃min) z1 (c̃avg) z1 (c̃max) TMI z1 (cMI)

10 < 0.2 3 3 3 < 0.01 5 66.7 66.7

30 < 0.2 12 12 12 < 0.01 19 58.3 58.3

50 < 0.2 32 32 32 < 0.01 43 34.4 34.3

70 < 0.2 76 77 79 < 0.01 106 34.2 39.5

100 < 0.2 70 71 73 < 0.01 103 41.1 47.1

150 < 0.2 91 91 91 < 0.01 121 33.0 33.0

Table 2. Results of SS and MI for n = 20, m = 5.

C
SS MI

δ1,max δ1,min
Tavg z1 (c̃min) z1 (c̃avg) z1 (c̃max) TMI z1 (cMI)

10 < 0.25 13 13 13 < 0.01 18 38.5 38.4

30 < 0.25 30 30 30 < 0.01 43 43.3 43.3

50 < 0.25 77 77 77 < 0.01 96 24.7 24.7

70 < 0.25 93 95 96 < 0.01 110 14.7 18.3

100 < 0.25 163 167 169 < 0.01 214 26.6 31.3

150 < 0.25 202 207 215 < 0.01 252 17.2 24.7

4.2. Uncertain version of F2‖Cmax

Small (n ∈ {9, 11, 13}) and large (n ∈ {80, 120, 160}) instances of the problem
were generated as the basis of experiments. We assumed MSize = 50, b1 = 5,
b2 = 5 as parameters of SS. The results are presented in Tables 7–13. Columns
z2 (σ̃min), z2 (σ̃avg) and z2 (σ̃max) denote, respectively, the minimum, the av-
erage and the maximum value of z2. Moreover, z2 (σ

∗) and z2 (σMI) denote,
respectively, the quality of optimal solution σ∗ and 2-approximate MI solution
σMI.

Analogously as in the previous subsection, the following performance indices
are used:
δ2,max = z2(σMI)−z2(σ̃max)

z2(σ̃max)
· 100%,

δ2,min = z2(σMI)−z2(σ̃min)
z2(σ̃min)

· 100%,
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Table 6. The average values of δ1,max and δ1,min for different n.

n 10 20 50 100

δ1,max,avg 44.60 27.48 19.19 9.77

δ1,min,avg 46.49 30.13 22.21 12.92

γ2 (σ) =
z2(σ)−z2(σ

∗)
z2(σ∗) · 100% where σ ∈ {σ̃min, σ̃max, σMI}.

From Tables 8–10 one can see that for all small tested problem instances, SS
returns optimal solutions. Moreover, running SS independently five times does
not improve the quality of solutions, i.e. z2 (σ̃min) = z2 (σ̃avg) = z2 (σ̃max), and
δ2,max = δ2,min for these problem instances. MI solutions are at least by 21.2%
worse than the optimal ones (see γ2 (σMI)). It is also worth noting that Tavg

is not substantially sensitive to changes of C, i.e. the increase of Tavg is not
greater than 6.71% while increasing C for fixed n (Table 7, C = 10, C = 150).
The execution times of MI do not exceed 0.1 for any of the tested problem in-
stances. Such time for the largest problem instance solved by SS (n = 160) is
approximately one hour. Values of δ2,max vary in the range between approxi-
mately 21% and 34% for small problem instances (n ∈ {9, 11, 13}) and between
9% and 15% for large problem instances, while values of δ2,min change in the
range between 12% and 20%. Average values of δ2,max and δ2,min are presented
in Table 13. The corollary is similar to that for uncertain P‖Cmax. Namely, the
increase of n results in decreasing of both δ2,max,avg and δ2,min,avg.

As a consequence of the experiments, we recommend using SS when the
quality of solutions is more important, and MI when having the solution in a
short time is preferred.

Table 7. Results of SS and MI for n = 80.

C
SS MI

δ2,max δ2,minTavg z2 (σ̃min) z2 (σ̃avg) z2 (σ̃max) TMI z2 (σMI)
10 1133 199 202 209 < 0.1 235 12.4 18.1
30 1161 292 298 306 < 0.1 342 11.8 17.1
50 1173 339 350 356 < 0.1 405 13.8 19.5
70 1187 473 477 483 < 0.1 542 12.2 14.6
100 1191 644 659 669 < 0.1 761 13.8 18.2
150 1209 977 993 1011 < 0.1 1131 11.9 15.8

4.3. Uncertain version of R‖
∑

Cj

Experiments were conducted for MSize = 70, b1 = 7, b2 = 7 as tuned pa-
rameters of SS. The results are presented in Tables 14–19. Columns z3 (x̃min),
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Table 11. Results of SS and MI for n = 120.

C
SS MI

δ2,max δ2,minTavg z2 (σ̃min) z2 (σ̃avg) z2 (σ̃max) TMI z2 (σMI)

10 2284 226 229 236 < 0.1 265 12.3 17.3

30 2293 456 466 482 < 0.1 532 10.4 16.7

50 2295 495 499 506 < 0.1 563 11.3 13.7

70 2312 584 593 609 < 0.1 676 11.0 15.8

100 2323 857 876 892 < 0.1 995 11.5 16.1

150 2341 1621 1657 1695 < 0.1 1857 9.6 14.6

Table 12. Results of SS and MI for n = 160.

C
SS MI

δ2,max δ2,min

Tavg z2 (σ̃min) z2 (σ̃avg) z2 (σ̃max) TMI z2 (σMI)

10 3612 596 604 621 < 0.1 690 11.1 15.8

30 3625 849 861 874 < 0.1 966 10.5 13.8

50 3642 1449 1491 1523 < 0.1 1669 9.6 15.2

70 3651 2035 2056 2086 < 0.1 2299 10.2 13.0

100 3653 2937 2989 3028 < 0.1 3354 10.8 14.2

150 3666 3842 3849 3855 < 0.1 4297 11.5 11.8

Table 13. The average values of δ2,max and δ2,min for different n.

n 9 11 13 80 120 160

δ2,max,avg
29.09 23.75 26.75

12.63 11.01 10.42

δ2,min,avg 17.20 15.68 13.96
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z3 (x̃avg) and z3 (x̃max) denote, respectively, the minimum, the average and the
maximum value of z3. Additionally, z3 (x

∗) and z3 (xMI) denote, respectively,
the quality of optimal solution x∗ and of 2-approximate MI solution xMI. The
performance indices are now expressed as:

δ3,max = z3(xMI)−z3(x̃max)
z3(x̃max)

· 100%,

δ3,min = z3(xMI)−z3(x̃min)
z3(x̃min)

· 100%,

γ3 (x) =
z3(x)−z3(x

∗)
z3(x∗) · 100% where x ∈ {x̃min, x̃max, xMI}.

Experiments for n = 10, m = 2 (Table 14) enable us to compare SS and MI
solutions with optimal ones. The result is promising, i.e.: the lowest and the
highest quality SS solutions are at most by 4.3% and 1.1% worse than the corre-
sponding optimal ones, respectively (see γ3 (x̃min) and γ3 (x̃max)). The quality
of MI solutions differs by at least 12.3% from the optimal solutions (γ3 (x̃MI)).
According to the results presented in Tables 15–18, values of δ3,max and δ3,min,
for m = 5 as well as different n and C, belong to intervals [4.7%, 11.8%] and
[7%, 15.7%], respectively. The average values of δ3,max and δ3,min, which are
presented in Table 19, descend for increasing values of n.

The execution time of SS for the largest tested problem instance exceeds 3
hours (Table 18: n = 100, m = 5, C = 150), while for MI it is equal 60.4.
This is caused by the necessity to solve the deterministic problem many times,
especially by the Improvement Method procedure.

Concluding, we recommend applying SS when the quality of solutions is
critical and MI when it is necessary to have solutions in a short time.

5. Final remarks

The paper focuses on heuristic algorithms solving uncertain min-max regret
task scheduling problems with interval uncertainty. It is assumed that values
of execution times of tasks belong to intervals of known bounds. All uncertain
problems refer to their deterministic counterparts of different properties, namely
to: R‖

∑

Cj and F2‖Cmax, which are polynomially solvable, and to NP-hard
P‖Cmax.

The uncertain problems investigated have various properties and differ with
respect to the existence of approximate schemes; however, all of them turned
out NP-hard irrespective of the time complexity of their deterministic counter-
parts. Therefore, Scatter Search based heuristic algorithms have been elabo-
rated to solve them efficiently. It is worth noting that when the deterministic
counterpart is NP-hard then it is not possible to determine any approximate
algorithms for the corresponding uncertain version. Heuristics are only possible
as time efficient solution procedures. For uncertain problems with easy deter-
ministic counterparts, i.e. for R‖

∑

Cj and F2‖Cmax, it is possible to search
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Table 17. Results of SS and MI for n = 50, m = 5.

C
SS MI

δ3,max δ3,min
Tavg z3 (x̃min) z3 (x̃avg) z3 (x̃max) TMI z3 (xMI)

10 5209 1509 1528 1542 3.31 1667 8.1 10.5

30 5236 1587 1595 1602 3.36 1712 6.9 7.9

50 5304 1747 1756 1769 3.34 1915 8.3 9.6

70 5401 1841 1871 1896 3.54 2026 6.9 10.0

100 5385 1730 1752 1768 3.41 1916 8.4 10.8

150 5473 1977 1998 2033 3.57 2186 7.5 10.6

Table 18. Results of SS and MI for n = 100, m = 5.

C
SS MI

δ3,max δ3,min

Tavg z3 (x̃min) z3 (x̃avg) z3 (x̃max) TMI z3 (xMI)

10 12878 4936 5001 5055 52.7 5350 5.8 8.4

30 12895 7097 7166 7221 59.3 7745 7.3 9.1

50 12913 7102 7140 7174 56.2 7598 5.9 7.0

70 12974 7637 7700 7731 59.9 8091 4.7 5.9

100 12926 8174 8292 8375 57.8 8772 4.7 7.3

150 13051 8295 8376 8462 60.4 8903 5.2 7.3

Table 19. The average values of δ3,max and δ3,min for different n.

n 10 20 50 100

δ3,max,avg 9.90 8.13 7.66 5.60

δ3,min,avg 13.71 11.16 9.89 7.51
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for approximate schemes. The conducted computational experiments confirmed
that Scatter Search algorithms are competitive, useful and outperform the qual-
ity of results generated by simple middle intervals heuristics, which turned out
to be the 2-approximate solution algorithms for R‖

∑

Cj and F2‖Cmax. The
comparison of Scatter Search algorithms with exact solutions for limited num-
ber of small instances is also promising. The drawback of the Scatter Search
algorithms is connected with their longer execution times, especially for uncer-
tain R‖

∑

Cj . Another important aspect of the uncertain problems investigated
deals with the determination of the worst-case scenarios and, in a consequence,
the efficient calculation of the values of criteria. This can be a difficult task
regardless of the complexity of deterministic counterparts. The Scatter Search
heuristic algorithms proposed in the paper are a good basis for the development
of this research direction both for the problems considered and for other uncer-
tain task scheduling problems. In particular, other metaheuristics, e.g. Tabu
Search, are worth investigating. More profound comparison with exact solutions
is also desirable, especially with application of a professional solver.
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