Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper introduces Extended Identification-Based Predictive Control (EIPC), which is a novel control method developed for the problem of adaptive impact mitigation. The model-based approach utilizing the paradigm of Model Predictive Control is combined with sequential identification of selected system parameters and process disturbances. The elaborated method is implemented in the shock-absorber control system and tested under impact loading conditions. The presented numerical study proves the successful and efficient adaptation of the absorber to unknown excitation conditions as well as to unknown force and leakage disturbances appearing during the process. The EIPC is used for both semi-active and active control of the impact mitigation process, which are compared in detail. In addition, the influence of selected control parameters and disturbance identification on the efficiency of the impact absorption process is assessed. As a result, it can be concluded that an efficient and robust control method was developed and successfully applied to the problem of adaptive impact mitigation.
Rocznik
Tom
Strony
art. no. e145937
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Institute of Fundamental Technological Research PAS, Pawińskiego 5B, 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research PAS, Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
- [1] J. Richert, D. Coutellier, C. Götz, and W. Eberle, “Advanced smart airbags: The solution for real-life safety?,” Int. J. Crashworthiness, vol. 12, pp. 159–171, 2007, doi: 10.1080/13588260701433461.
- [2] W. Grzesikiewicz and M. Makowski, “Semi-Active System of Vehicle Vibration Damping,” Appl. Sci., vol. 11, no. 10, p. 4577, 2021, doi: 10.3390/app1110457.
- [3] M.-H. Noh and S.-Y. Lee, “Parametric impact performances in a new type crash cushion barrier system using an energy absorption pipe,” Int. J. Crashworthiness, vol. 25, no. 1, pp. 106–119, 2020, doi: 10.1080/13588265.2018.1524548.
- [4] M. Huang, “Analysis of Rocket Modelling Accuracy and Capsule Landing Safety,” Int. J. Aeronaut. Space Sci., vol. 23, pp. 392–405, 2022, doi: 10.1007/s42405-021-00439-y.
- [5] L. Fu, S. Chen, X. Bai, and J. Wang, “Optimal control of aircraft landing gear state feedback based on magneto rheological damper,” Chinese Control And Decision Conference CCDC 2018, China, 2018, pp. 6673–6676, doi: 10.1109/ccdc.2018.8408306.
- [6] C. Graczykowski and J. Holnicki-Szulc, “Protecting Offshore Wind Turbines Against Ship Impacts by Means of Adaptive Inflatable Structures,” Shock. Vib., vol. 16, no. 4, pp. 335–353, 2009, doi: 10.3233/SAV-2009-0473.
- [7] X. Lei, G. Zhang, S. Li, H. Qian, and Y. Xu, “Dual-spring AGV shock absorption system design: Dynamic analysis and simulations,” IEEE Int. Conf. Robot. Biomim. ROBIO 2017, Macao, 2017, pp. 1068–1074, doi: 10.1109/ROBIO.2017.8324559.
- [8] Y. Chen, W. Chiu, and Y. Chen, “Effect of the Shock Absorber of the Shock Absorption Benefits for Upper Arm,” in: Kim K., Kim H. (eds.) Mobile and Wireless Technology ICMWT 2018. Lecture Notes in Electrical Engineering, vol. 513, Springer, Singapore, 2019.
- [9] S. Ochelski, P. Bogusz, and A. Kiczko, “Static axial crush performance of unfilled and elastomer-filled composite tubes,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 1, pp. 37–43, 2012, doi: 10.2478/v10175-012-0007-8.
- [10] M. Fanton et al., “Variable area, constant force shock absorption motivated by traumatic brain injury prevention,” Smart Mater. Struct., vol. 29, no. 8, p. 085023, 2020, doi: 10.1088/1361-665X/ab905f.
- [11] C. Han, B.-H. Kang, S.-B. Choi, J.M. Tak, and J.-H. Hwang, “Control of landing efficiency of an aircraft landing gear system with magnetorheological dampers,” J. Aircr., vol. 56, pp. 1980–1986, 2019, doi: 10.2514/1.C035298.
- [12] M. Shou et al., “Hybrid modeling of the nonlinear behaviors for magnetorheological energy absorber,” Int. J. Mech. Sci., vol. 243, p. 107820, 2022, doi: 10.1016/j.ijmecsci.2022.107820.
- [13] Z. Lou, R.D. Erwin, C.B. Winkler, and F.E. Filisko, “An electrorheologically controlled semi-active landing gear,” SAE Transactions Sec. J. Aerosp., vol. 102, pp. 334–42, 1993, doi: 10.4271/931403.
- [14] G. Mikułowski, R. Wiszowaty, and J. Holnicki-Szulc, “Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber,” Smart Mater. Struct., vol. 22 pp. 125011–1-12, 2013, doi: 10.1088/0964-1726/22/12/125011.
- [15] K. Zhang, S.-T. Cui, Y.-C. Chen, and Z.P. Tang, “Hydraulic shape memory alloy shock absorber: design, analysis, and experiments,” J. Intell. Mater. Syst. Struct., vol. 29, pp. 1986–94, 2018, doi: 10.1177/1045389X18758177.
- [16] P. Bartkowski, H. Bukowiecki, F. Gawiński, and R. Zalewski, “Adaptive crash energy absorber based on a granular jamming mechanism,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e139002, 2022, doi: 10.24425/bpasts.2021.139002.
- [17] A. Mackojc, B. Chilinski, and R. Zalewski, “Preliminary research of a symmetrical controllable granular damper prototype,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 3, p. e141002, 2022, doi: 10.24425/bpasts.2022.141002.
- [18] S. Guo, L. Xu, Y. Liu, X. Guo, and L. Zuo, “Modeling and Experiments of a Hydraulic Electromagnetic Energy-Harvesting Shock Absorber,” IEEE-ASME Trans. Mechatron., vol. 22, no. 6, pp. 2684–2694, 2017, doi: 10.1109/TMECH.2017.2760341.
- [19] R.A. Oprea, M. Mihailescu, A.I. Chirila, and I.D. Deaconu, “Design and efficiency of linear electromagnetic shock absorbers,” in 13th Int. Conf. on Optimization of Electrical and Electronic Equipment OPTIM 2012, Romania, pp. 630–634, doi: 10.1109/OPTIM.2012.6231813.
- [20] S. Sivakumar and A. Haran, “Mathematical model and vibration analysis of aircraft with active landing gears,” J. Vib. Control, vol. 21, no. 2, pp. 229–245, doi: 10.1177/1077546313486908.
- [21] G.L. Ghiringhelli, “Testing of semi-active landing gear control for a general aviation aircraft,” AIAA J. Aircraft, vol. 37, no. 4, pp. 606–616, 2000.
- [22] G. Mikułowski and Ł. Jankowski, “Adaptive landing gear: optimum control strategy and potential for improvement,” Shock Vib., vol. 16, pp. 175–194, 2009, doi: 10.3233/SAV-2009-0460.
- [23] R. Faraj, C. Graczykowski, and J. Holnicki-Szulc, “Adaptable pneumatic shock absorber,” J. Vib. Control, vol. 25, no. 3, pp. 711–721, 2019, doi: 10.1177/ 1077546318795532.
- [24] C. Graczykowski and R. Faraj, “Development of control systems for fluid-based adaptive impact absorbers,” Mech. Syst. Signal. Process., vol. 122, pp. 622–641, 2019, doi: 10.1016/j.ymssp.2018.12.006.
- [25] R. Faraj and C. Graczykowski, “Hybrid prediction control for self-adaptive fluid-based shock-absorbers,” J. Sound Vib., vol. 449, pp. 427–446, 2019, doi: 10.1016/j.jsv.2019.02.022.
- [26] R. Faraj, G. Mikułowski, and R. Wiszowaty, “Study on the state-dependent path-tracking for smart pneumatic shock-absorber,” Smart Mater. Struct., vol. 29, no. 11, p. 115008–1-16, 2020, doi: 10.1088/1361-665X/ab9adc.
- [27] X. Zeng, G. Li, G. Yin, D. Song, S. Li, and N. Yang, “Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle,” Mech. Syst. Signal Process., vol. 101, pp. 97–120, 2018, doi: 10.1016/j.ymssp.2017.08.029.
- [28] X. Sun, C. Yuan, and Y. Cai, “Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model,” Mech. Syst. Signal Process., vol. 94, pp. 94–110, 2017, doi: 10.1016/j.ymssp.2017.02.033.
- [29] C. Graczykowski and R. Faraj, “Identification-based predictive control of semi-active shock-absorbers for adaptive dynamic excitation mitigation,” Meccanica, vol. 55, no. 12, pp. 2571–2597, 2020, doi: 10.1007/s11012-020-01239-6.
- [30] J. Warrick and C. Lee, “Advanced airbag system for cargo air-drop,” 16th AIAA Aerodynamic Decelerator Systems Technology Conf. and Seminar, Boston, USA, 2001, pp. 293–303.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-780f50a0-ea8b-4447-b2b7-699c6bc1f431