PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Infrared Radiofluorescence (IR-RF) is a relatively new method for dosimetric dating of the depositional timing of sediments. This contribution presents an interlaboratory comparison of IR-RF measurements of sedimentary feldspar from eight laboratories. A comparison of the variability of instrumental background, bleaching, saturation, and initial rise behaviour of the IR-RF signal was carried out. Two endmember samples, a naturally bleached modern dune sand sample with a zero dose and a naturally saturated sample from a Triassic sandstone (~250 Ma), were used for this interlaboratory comparison. The major findings of this study are that (1) the observed IR-RF signal keeps decreasing beyond 4000 Gy, (2) the saturated sample gives an apparent palaeodose of 1265 ± 329 Gy and (3) in most cases, the natural IR-RF signal of the modern analogue sample (resulting from natural bleaching) is higher than the signal from laboratory-induced bleaching of 6 h, using a solar simulator (SLS). In other words, the laboratory sample bleaching was unable to achieve the level of natural bleaching. The results of the investigations are discussed in detail, along with possible explanations.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
105--120
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Geochronology Group, Inter-University Accelerator Centre New Delhi, India
  • Department of Geography, Justus Liebig University Giessen Giessen, Germany
  • Department of Geography and Earth Sciences, Aberystwyth University Aberystwyth, United Kingdom
  • IRAMAT-CRP2A, UMR 5060, CNRS-Université Bordeaux Montaigne, Pessac, France
  • Department of Geosciences, Stony Brook University Stony Brook, United States
  • Research Laboratory for Archaeology and the History of Art, Oxford University Oxford, United Kingdom
  • Chair of Geomorphology, University of Bayreuth Bayreuth, Germany
autor
  • Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology Leipzig, Germany
  • Federal Office for Radiation Protection, Berlin, Germany
  • Chair of Geomorphology, University of Bayreuth Bayreuth, Germany
  • Institute of Earth Surface Dynamics University of Lausanne Lausanne, Switzerland
  • Leibniz Institute for Applied Geophysics Hannover, Germany
  • Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology Leipzig, Germany
  • Freiberg Instruments GmbH Freiberg, Germany
  • IRAMAT-CRP2A, UMR 5060, CNRS-Université Bordeaux Montaigne, Pessac, France
autor
  • Department of Geography, Justus Liebig University Giessen Giessen, Germany
Bibliografia
  • 1. Aitken MJ, 1985. Thermoluminescence dating. Academic Press, London.
  • 2. Aitken MJ, 1998. An introduction to Optical dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence. Oxford University press, Oxford.
  • 3. Buylaert JP, Jain M, Murray AS, Thomsen KJ, Lapp T, 2012. IR-RF dating of sand-sized K-feldspar extracts: A test of accuracy. Radiation Measurements 47(9): 759–765.
  • 4. Erfurt G, 2003a. Infrared luminescence of Pb+ centres in potassium-rich feldspars. Physica Status Solidi (a) 200(2): 429–438.
  • 5. Erfurt G, 2003b. Radiolumineszenzspektroskopie und -dosimetrie an Feldspaten und synthetischen Luminophoren fur die geochronometrische Anwendung (Radioluminescence spectroscopy and dosimetry on feldspars and synthetic phosphors for geochronometry). Ph.D Thesis, Technische Universität Bergakademie Freiberg, Germany.
  • 6.Erfurt G, Krbetschek MR, 2003a. IRSAR–A single-aliquot regenerative-dose dating protocol applied to the infrared radiofluorescence (IR-RF) of coarse-grain K feldspar. Ancient TL 21(1): 35–42.
  • 7. Erfurt G, Krbetschek MR, 2003b. Studies on the physics of the infrared radioluminescence of potassium feldspar and on the methodology of its application to sediment dating. Radiation Measurements 37(4–5): 505–510.
  • 8. Frouin M, Huot S, Kreutzer S, Lahaye C, Lamothe M, Philippe A, Mercier N, 2017. An improved radiofluorescence single-aliquot regenerative dose protocol for K-feldspars. Quaternary Geochronology 38: 13–24.
  • 9. Frouin M, Huot S, Mercier N, Lahaye C, Lamothe M, 2015. The issue of laboratory bleaching in the infrared-radiofluorescence dating method. Radiation Measurements 81: 212–217.
  • 10. Gusarov A, Doyle D, Glebov L, Berghmans F, 2005. Comparison of radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers, In: Taylor EW eds., Presented at the Optics & Photonics 2005, SPIE, 58970I–8. Doi 10.1117/12.619199.
  • 11. Herman F, Rhodes EJ, Braun J, Heiniger L, 2010. Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology. Earth and Planetary Science Letters 297(1–2): 183–189, DOI 10.1016/j.epsl.2010.06.019.
  • 12. Huot S, Frouin M, Lamothe M, 2015. Evidence of shallow TL peak contributions in infrared radiofluorescence. Radiation Measurements 81: 237–241.
  • 13. Hütt G, Jaek I, Tchonka J, 1988. Optical dating: K-Feldspars optical response stimulation spectra. Quaternity Science Reviews 7(3–4): 381–385. DOI 10.1016/0277-3791(88)90033-9.
  • 14. Krbetschek MR, Trautmann T, Dietrich A, Stolz W, 2000. Radio-luminescence dating of sediments: Methodological aspects. Radiation Measurements 32(5–6): 493–498.
  • 15. Kreutzer S, Schmidt C, Fuchs MC, Dietze M, Fischer M, Fuchs M, 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30(1): 1–8.
  • 16. Kreutzer S, Dietze M, Burow C, Fuchs MC, Schmidt C, Fischer M, Friedrich J, 2017a. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 0.7.5. https://cran.r-project.org/package=Luminescence.
  • 17. Kreutzer S, Murari MK, Frouin M, Fuchs M, Mercier N, 2017b. Always remain suspicious: A case study on tracking down a technical artefact while measuring IR-RF. Ancient TL 35(1): 20–30.
  • 18. Kreutzer S, Martin L, Dubernet S, Mercier N, 2018. The IR-RF alpha-Efficiency of K-feldspar. Radiation Measurements 120: 148–156. DOI 10.1016/j.radmeas.2018.04.019.
  • 19. Kunz A, Frechen M, Ramesh R, Urban B, 2010. Luminescence dating of late Holocene dunes showing remnants of early settlement in Cuddalore and evidence of monsoon activity in south east India. Quaternary International 222(1–2): 194–208.
  • 20. Li SH, Wintle AG, 1992. Luminescence sensitivity change due to bleaching of sediments. Nuclear Tracks and Radiation Measurements 20(4): 567–573.
  • 21. Lapp T, Jain M, Thomsen KJ, Murray AS, Buylaert JP, 2012. New luminescence measurement facilities in retrospective dosimetry. Radiation Measurements 47(9): 803–808.
  • 22. Murari MK, Kreutzer S, Fuchs M, 2018. Further investigations on IR-RF: Dose recovery and correction. Radiation Measurements 120: 110–119. DOI 10.1016/j.radmeas.2018.04.017.
  • 23. Murari MK, Kreutzer S, King G, Frouin M, Tsukamoto S, Schmidt C, Lauer T, Klasen N, Richter D, Friedrich J, Mercier N, Fuchs M, 2021. Infrared radiofluorescence (IR-RF) dating: A review. Quaternary Geochronology 64: 101155. DOI 10.1016/j.quageo.2021.101155.
  • 24. Nesbitt HW, Young GM, 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48(7): 1523–1534.
  • 25. Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek MR, Richter A, Spencer JQ, 2008. Luminescence dating: basics, methods and applications. Quaternary Science Journal 57(1/2): 95–149.
  • 26. R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
  • 27. Richardson CA, 1994. Effect of bleaching on the sensitivity to dose of the infrared-stimulated luminescence of potassium-rich feldspars from Ynyslas, Wales. Radiation Measurements 27(2–3): 587–592.
  • 28. Richter D, Pintaske R, Dornich K, Krbetschek MR, 2012. A novel beta source design for uniform irradiation in dosimetric applications. Ancient TL 30(2): 57–63.
  • 29. Richter A, Dornich K, 2013. Lexsyg - A new system for luminescence research. Geochronometria 40(4): 220–228.
  • 30. Röhling HG, Lepper J, Diehl M, Dittrich D, Freudenberger W, Friedlein V, Hug-Diegel N, Nitsch E, 2018. The buntsandstein group in the stratigraphic table of germany 2016. Zeitschrift der Dtsch. Gesellschaft fur Geowissenschaften 169: 151–180.
  • 31. Schilles T, 2002. Die Infrarot-Radiolumineszenz von Feldspäten und ihr Einsatz in der Lumineszenzdatierung. Ph.D Thesis, Universität Heidelberg.
  • 32. Schilles T, Habermann J, 2000. Radioluminescence dating: The IR emission of feldspar. Radiation Measurements 32(5–6): 679–683.
  • 33. Tesa Company (2020). Tesa aluminum adhesive tape/self-adhesive aluminum tape for repairs of metallic surface.WEB site: https://www.tesa.com/en/industry/general-applications/sealing-tapes/aluminum-foil-tapes. Accessed 2020 August 31.
  • 34. Thorlabs (2020): ND10B - Unmounted Reflective Ø25 mm ND Filter, Optical Density: 1.0. WEB site: https://www.thorlabs.com/thorproduct.cfm?partnumber=ND10B. Accessed 2020 August 31.
  • 35. Trautmann T, Krbetschek MR, Dietrich A, Stolz W, 1998. Investigations of feldspar radioluminescence: Potential for a new dating technique. Radiation Measurements 29(3–4): 421–425.
  • 36. Trautmann T, Krbetschek MR, Dietrich A, Stolz W, 1999a. Feldspar radioluminescence: A new dating method and its physical background. Journal of Luminescence 85(1–3): 45–58.
  • 37. Trautmann T, Dietrich A, Stolz W, Krbetschek MR, 1999b. Radioluminescence dating: A new tool for quaternary geology and archaeology. Naturwissenschaften 86(9): 441–444. DOI 10.1007/s001140050649.
  • 38. Trautmann T, 2000. A study of radioluminescence kinetics of natural feldspar dosimeters: Experiments and simulations. Journal of Physics D 33(18): 2304–2310. DOI 10.1088/0022-3727/33/18/315.
  • 39. Varma V, Biswas RH, Singhvi AK, 2013. Aspects of infrared radioluminescence dosimetry in K-feldspar. Geochronometria 40(4): 266–273.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-780c66f2-9908-42ef-b5ee-ac2a8290342d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.