PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concentrations of Natural Radionuclides (40K, 226Ra, 232Th) at the Potash Salts Deposit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Specific activity of natural radionuclides 226Ra, 232Th and 40K was measured by gamma spectrometry in samples of soil and bottom sediments of rivers on the territory of potassium salt deposit development in order to collect information on radionuclide distribution. According to the results of examinations, the range of 226Ra, 232Th and 40K activity values in soils and bottom sediments of the territory of influence was <2.17–19.7 Bq/kg, <2.5–20.5 Bq/kg, 123–500 Bq/kg. Migration of the studied radionuclides is limited to 2 km zone. The results obtained provide useful information on the levels of naturally occurring radionuclides in the zone of influence of mining objects and are of interest for a comparative evaluation of the impact of salt mining on the radiation environment of the territory.
Rocznik
Strony
179--187
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Geology, Perm State University, Bukireva St. 15, 614990 Perm, Russia
  • Department of Geology, Perm State University, Bukireva St. 15, 614990 Perm, Russia
autor
  • Department of Geology, Perm State University, Bukireva St. 15, 614990 Perm, Russia
  • Department of Geology, Perm State University, Bukireva St. 15, 614990 Perm, Russia
Bibliografia
  • 1. Abusini M., Al-Ayasreh K., Al-jundi J. 2008. Determination of uranium, thorium and potassium activity concentrations in soil cores in Araba valley, Jordan. Radiation Protection Dosimetry, 128(2), 213–216. DOI: 10.1093/rpd/ncm327.
  • 2. Alam M.N., Chowdhury M.I., Kamal M., Ghose S., Islam M.N., Mustafa, M.N., Miah M.M.H., Ansary M.M. 1999. The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh. Journal of Environmental Radioactivity, 46(2), 243–250. DOI: 10.1016/S0265–931X(98)00143-X.
  • 3. Baloch M.A., Qureshi A.A., Waheed A. 2012. A study on natural radioactivity in khewra salt mines, Pakistan. Journal of Radiation Research, 53(3), 411–421. DOI: 10.1269/jrr.11162.
  • 4. Beretka J., Mathew P.J. 1985. Natural radioactivity of australian building materials, industrial wastes and by-products. Health Physics, 48(1), 87–95. DOI: 10.1097/00004032–198501000–00007.
  • 5. Calin M.R., Calin M.A., Simionca G., Mera, O. 2012. Indoor radon levels and natural radioactivity in Turda salt mine, Romania. Journal of Radioanalytical and Nuclear Chemistry, 292 (1), 193–201. DOI: 10.1007/s10967–011–1394–2.
  • 6. Caridi F., D’Agostino M., Marguccio S., Belvedere A., Belmusto G., Marcianò G., Sabatino G., Mottese A. 2016. Radioactivity, granulometric and elemental analysis of river sediments samples from the coast of Calabria, south of Italy. European Physical Journal Plus, 131 (5), 136. DOI: 10.1140/epjp/i2016–16136–1.
  • 7. Caridi F., Messina M., Belvedere A., D’Agostino M., Marguccio S., Settineri L., Belmusto G. 2019. Food salt characterization in terms of radioactivity and metals contamination. Applied Sciences, 9(14), 2882. DOI: 10.3390/app9142882.
  • 8. Chernyi K.A. 2019. Ionization radiation parameters and their spatial variation patterns in potash salt. Gornyy zhurnal, 1, 75–80. DOI: 10.17580/gzh.2019.01.16. (In Russ.).
  • 9. Dragović S., Gajić B., Dragović R., JankovićMandić L., Slavković-Beškoski L., Mihailović N., Momčilović M., Ćujić M. 2012. Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia. Journal of Environmental Monitoring, 14(1), 2012, 127–137. DOI: 10.1039/c1em10457h.
  • 10. El Afifi E.M., Hilal M.A., Attallah M.F., EL-Reefy S.A. 2009. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. Journal of Environmental Radioactivity, 100(5), 407–412. DOI: 10.1016/j.jenvrad.2009.01.005
  • 11. El-Bahi S.M. 2003. Radioactivity levels of salt for natural sediments in the northwestern desert and local markets in Egypt. Applied Radiation and Isotopes, 58(1), 143–148. DOI: 10.1016/S0969–8043(02)00270–1.
  • 12. Extent of environmental contamination by naturally occurring radioactive material (NORM) and technological options for mitigation. 2003. IAEA, International Atomic Energy Agency. Technical Report. IAEA. P.1–3.
  • 13. Forkapic S., Vasin J., Bikit I., Mrdja D., Bikit K., Milić S. Correlations between soil characteristics and radioactivity content of Vojvodina soil. 2017. Journal of Environmental Radioactivity, 166(1), 104–111. DOI: 10.1016/j.jenvrad.2016.04.003.
  • 14. Grebenshchikova V.I., Gritsko P.P., Kuznetsov P.V., Doroshkov A.A. 2017. Uranium and thorium in the soil cover of the Irkutsk-Angara industrial zone (Pribaikalye). Izvestiya Tomskogo politekhnicheskogo universiteta, 328(7), 93–104. (In Russ.)
  • 15. Guerrero J.L., Gutiérrez-Álvarez I., Mosqueda F., Gázquez M.J., García-Tenorio R., Olías, M., Bolívar J.P. 2020. Evaluation of the radioactive pollution in the salt-marshes under a phosphogypsum stack system. Environmental Pollution, 258, 113729. DOI: 10.1016/j.envpol.2019.113729.
  • 16. Guseva A.S., Ustinov S.A., Petrov V.A. 2019. Distribution of natural radionuclides in the soils on the territory of the New Moscow. Proceedings of higher educational establishments. Geology and Exploration, 5, 88–94. (In Russ.) DOI: 10.32454/0016–7762–2019–5-88–94. (In Russ.)
  • 17. Hançerlioğullari A. & Eyüboğlu K. 2020. Natural radionuclide and toxic metal contents of rock salts from mines in Central Anatolia of Turkey. International Journal of Environmental Analytical Chemistry. DOI: 10.1080/03067319.2020.1814264.
  • 18. Joshua E.O., Ademola J.A., Akpanowo M.A., Oyebanjo, O.A., Olorode, D.O. 2009. Natural radionuclides and hazards of rock samples collected from Southeastern Nigeria. Radiation Measurements, 44(4), 401–404. DOI: 10.1016/j.radmeas.2009.04.002
  • 19. Khater A.E.M., Al-Mobark L.H, Aly, A.A., Al-Omran A.M. 2013. Natural radionuclides in clay deposits: Concentration and dose assessment. Radiation Protection Dosimetry, 156(3), 321–330. DOI: 10.1093/rpd/nct064.
  • 20. Kozlowska B., Walencik A., Dorda J., Zipper W. 2012. Radioactivity of dumps in mining areas of the Upper Silesian Coal Basin in Poland. Proc. EPJ Web of Conferences 24, 05006. DOI: 10.1051/epjconf/20122405006.
  • 21. Markelov D.А. 2008. Radioecological condition of territories (assessment, diagnosis, forecasting). Energiya, Moscow. (In Russ.)
  • 22. Menshikova Е.А., Blinov S.M., Belyshev D.А., Perevoshchikov R.D. 2019. Radiation studies of dumps of the Kizelovsky coal basin. Izvestiya Uralskogo gosudarstvennogo gornogo universiteta, 56(4), 81–89. DOI: 10.21440/2307–2091–2019–481–89. (In Russ.).
  • 23. Mirzoyeva N., Gulina L., Gulin S., Plotitsina O., Stetsuk A., Arkhipova S., Korkishko N., Eremin O. 2015. Radionuclides and mercury in the salt lakes of the Сrimea. Chinese Journal of Oceanology and Limnology, 33(6), 1413–1425. DOI: 10.1007/s00343–015–4374–5.
  • 24. Monged M.H.E, Hassan H.B., El-Sayed S.A. 2020. Spatial Distribution and Ecological Risk Assessment of Natural Radionuclides and Trace Elements in Agricultural Soil of Northeastern Nile Valley. Egypt. Water, Air, and Soil Pollution, 231(7), 338. DOI: 10.1007/s11270–020–04678–9.
  • 25. Paschoa A.S., Steinhäusler F. 2010. Terrestrial, Atmospheric and Aquatic Natural Radioactivity. Radioactivity in the Environment, 17, 29–85. DOI: 10.1016/S1569–4860(09)01703–3.
  • 26. Radiation Situation on the Territory of Russia and Neighbouring States in 2019. Ezhegodnik. 2020. Roshydromet, Obninsk.
  • 27. Rafat M.A. 2015. Radioactivity Levels in Some Sediments and Water Samples from Qarun Lake by Low–Level Gamma Spectrometry. International Journal of Science and Research, 4(2), 619–625.
  • 28. Sidorova G.P., Krylov D.A. 2015. Assessment of radioactive elements in coal and its combustion products. Gornyy informatsionno-analiticheskiy byulleten, 7, 369–376. (In Russ.).
  • 29. Singh, S., Rani, A., Mahajan, R.K. 2005. 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiation Measurements, 39(4), 431–439. DOI: 10.1016/j.radmeas.2004.09.003.
  • 30. Srinivasa E., Rangaswamy D.R., Sannappa J. 2019. Assessment of radiological hazards and effective dose from natural radioactivity in rock samples of Hassan district, Karnataka, India. Environmental Earth Sciences, 78(14), 431. DOI: 10.1007/s12665–019–8465-z.
  • 31. Tahir S.N.A., Alaamer A.S. 2008. Determination of natural radioactivity in rock salt and radiation doses due to its ingestion. Journal of Radiological Protection, 28(2), 233–236. DOI: 10.1088/0952–4746/28/2/N01.
  • 32. UNSCEAR. 2000. Sources, effects and risks of ionizing radiation. UNSCEAR, Report to the General Assembly, with annexes.
  • 33. Vertman E.G., Karatayev V.D., Levitskiy V.M., Ergashev D.E. 2002. A study of the surface distribution of uranium isotopes over the territory of Tomsk District. Izvestiya Tomskogo politekhnicheskogo Universiteta, 305(3), 45–55. (In Russ.).
  • 34. Yang, Y.-X., Wu X.-M., Jiang, Z.-Y., Wang W.X., Lu J.-G., Lin J., Wang L.-M., Hsia, Y.-F. 2005. Radioactivity concentrations in soils of the Xiazhuang granite area, China. Applied Radiation and Isotopes, 63(2), 255–259. DOI: 10.1016/j.apradiso.2005.02.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-780b3707-c0c2-437b-b0e6-dcde8fe0c756
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.