PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of an advanced compressed air energy system (CAES) using turbomachinery for energy storage and recovery and for continuous on-site power augmentation as an air Brayton cycle

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A thermodynamic analysis of an advanced CAES for Distributed Power Generation (DPG) is presented that utilizes turbomachinery for energy recovery, but also gives continuous power generation to augment on-site power. The advanced CAES uses renewable energy such as wind power and solar PV in the power range of 1500 to 2500 kW plus recuperation of waste heat from the existing on-site prime mover to improve the utility of the energy storage system. The proposed system also utilizes battery storage to maintain high energy density storage, preferably without the need for costly electrical rectifying and inversion systems to improve the stabilization of power generation. This proposed system may be thought of as a “cross-over” system that combines CAES technology with electric battery storage technology, particularly if the stored electric power is used directly as D.C. power at an industrial facility. The direct use of stored energy from a battery as heat input to the proposed “cross-over” system also may be considered in some limited applications. The ideal application of the proposed system is for isolated DPG systems perhaps in remote sites utilizing “power islands” of renewable energy augmented with on-site fossil fuel prime mover, power generation systems. The proposed “cross-over” system enables higher reliability, faster response to transient power loads, and the efficient use of renewable energy, as well as heat recovery from conventional prime mover systems that are on site.
Rocznik
Strony
479--493
Opis fizyczny
Bibliogr. 7 poz., il. kolor., wykr.
Twórcy
autor
  • Concepts NREC, LLC, White River Junction, VT, USA
  • Concepts NREC, LLC, White River Junction, VT, USA
Bibliografia
  • [1] Ulvestad, A.: A brief review of current lithium ion battery technology and potential solid-state battery technologies, https://arxiv.org/pdf/1803.04317.
  • [2] Choi, D., et al.: Lifecycle evaluation of li-ion battery chemistries under grid duty control’, Pacific Northwest National Laboratory, Support from DOE Office of Electricity Delivery & Energy Reliability Energy Storage Program, DOE-OE Peer Review (Washington, DC), 2016.
  • [3] Agrawal, P., et al.: Characterization and assessments of novel bulk storage technologies: a study for the DOE Energy Storage Systems Program, Sandia National Laboratories Report No. SAND2011-3700, 2011.
  • [4] Greenblatt, J. B., et al.: Base load wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation, Energy Policy, 35, 2007.
  • [5] Thresher, R., Robinson, M., and Veers, P.: The future of wind energy technology in the United States, National Renewable Energy Laboratory, NREL/CP-500-43412, Presented at the 2008 World Renewable Energy Congress, Glasgow, Scotland, 2008.
  • [6] Fertig, E., and Apt, J.: Economics of compressed air energy storage to integrate wind power - a case study in ERCOT, Economic Policy, 39, 2011.
  • [7] Wang, J., et al.: Overview of compressed air energy storage and technology development, Energies, 10, 7, 991, 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-780afa58-e602-451c-8478-70794d9594f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.