Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Investigating the mechanical properties and durability indices of concrete containing Fe3O4/SiO2/GO and GO nanoparticles
Języki publikacji
Abstrakty
Najnowsze badania w przemyśle materiałów budowlanym uzasadniają częściowe zastąpienie cementu nanomateriałami. Nanokompozyt tlenku grafenu jest materiałem, który został ostatnio zaproponowany jako dodatek do betonu. Brak jest jednak badań nad zastosowaniem tych syntetycznych związków w betonie, a także niewiele wiadomo o wpływie tych materiałów na właściwości mechaniczne i trwałość betonu. Dlatego w niniejszej pracy laboratoryjnej, przeprowadzeniu syntezy nanocząstek Fe3O4/SiO2/ tlenek grafenu i nanocząstek tlenku grafenu oraz potwierdzono je wynikami analiz spektroskopii w podczerwieni oraz za pomocą skaningowej i trasmisyjnej mikroskopii elektronowej. Nanocząstki te dodawano do betonu jako zamiennik cementu w ilości 1, 2, 3 i 4% masy cementu i zbadano ich wpływ na właściwości mechaniczne i trwałość próbek po 7, 28 i 90 dniach. Wyniki badań wykazują, że najlepsze wyniki w badaniach właściwości mechanicznych uzyskały mieszanki, w których cement zastąpiono odpowiednio 2% nanocząstek Fe3O4/ SiO2/tlenek grafenu oraz 3% nanocząstek tlenku grafenu. Beton zawierający nanocząstki Fe3O4/SiO2/tlenek grafenu zwiększył wytrzymałość na ściskanie o 14% i wytrzymałość na rozciąganie przy rozłupywaniu o 12% po 28 dniach utwardzania. Również w próbce zawierającej 2% nanocząstek Fe3O4/SiO2/tlenek grafenu zaobserwowano największą odporność na środowisko kwasowe najmniejszą przepuszczalność. Natomiast w teście ultradźwiękowym stwierdzono największą prędkość przejścia fali ultradźwiękowej w porównaniu z próbkami zawierającymi nanocząstki tlenku grafenu i z próbką wzorcową.
Recent research in the construction industry justifies the partial replacement of cement by nanomaterials. Graphene oxide nanocomposite is a material that has been recently proposed as a suitable alternative for part of cement in concrete. However, there is no research on the addition of these synthetic compounds to concrete, and little is known about the effect of these materials on the mechanical and durability properties of concrete. Therefore, in this laboratory study, the synthesis of Fe3O4/SiO2/GO and GO nanoparticles was performed and confirmed with FT-IR, SEM, TEM analyses. These nanoparticles partially replaced cement by 1, 2, 3, and 4 % by mass of the cement, and their effect on mechanical and durability properties of concrete at the ages of 7, 28, and 90-day, were investigated. The results suggest that mixtures in which 2% Fe3O4/SiO2/GO and 3% GO substituted cement yielded the best results in the mechanical properties tests. Concrete containing Fe3O4/SiO2/GO nanoparticles enhanced compressive strength by 14% and splitting tensile strength by 12% after 28-days of curing. Also, concrete containing 2% Fe3O4/SiO2/GO, had the highest resistance to an acidic environment, the lowest permeability, and the highest transient pulse velocity in the ultrasonic test, compared to the specimen containing GO nanoparticles and the control sample.
Wydawca
Czasopismo
Rocznik
Tom
Strony
67--82
Opis fizyczny
Bibliogr. 41 poz., il., tab.
Twórcy
autor
- Department of Civil Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
autor
- Department of Civil Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Department of Civil Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
autor
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Department of Civil Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
Bibliografia
- 1. H. Yazici, M.Y. Yardimci, S. Aydin, A.S. Karabulut, Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr. Build. Mater. 23, 1223-1231 (2009).
- 2. E. Sadrossadat, H. Basarir, An Evolutionary-Based Prediction Model of the 28-Day Compressive Strength of High-Performance Concrete Containing Cementitious Materials. Adv. Civ. Eng. Mater. 8, 484-497 (2019).
- 3. M.I. AbdulAleem, P.D. Arumairaj, Geopolymer concrete: A review. Int. J. Eng. Sci. Emer. Technol. 1, 118-122 (2012).
- 4. R. Cheraghalizadeh, T. Akcaoglu, Properties of self-compacting concrete containing olive waste ash. Cem. Wapno Beton, 25, 178-187 (2020).
- 5. A. Bazrafkan, A. Habibi, A. Sayari, Experimental study on mechanical properties of concrete with marble dust. Cem. Wapno Beton, 25 316-329 (2020).
- 6. S.A. Emamian, H. Eskandari-Naddaf, Genetic programming based formulation for compressive and flexural strength of cement mortar containing nano and micro silica after freeze and thaw cycles. Constr. Build. Mater. 241, 118027 (2020).
- 7. A. Kooshkaki, H. Eskandari-Naddaf , Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling. Constr. Build. Mater. 212,176-191 (2019).
- 8. S.A. Emamian, H. Eskandari-Naddaf, Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. Constr. Build. Mater. 218, 8-27 (2019).
- 9. F. Zahiri, H. Eskandari-Naddaf, Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene fibers using extreme vertices mixture design, FSCE. 13, 821-830 (2019).
- 10. M. Collepardi, J. Ogoumah Olagot, R. Troli, F. Simonelli, S. Collepardi, Combination of Silica Fume, Fly Ash and Amorphous Nano-Silica in Superplasticized High-Performance Concretes, Enco, Engineering Concrete, Ponzano Veneto, Italy, (2007).
- 11. A. Abayou, A. Yasien, M. Bassuoni, Properties of Nanosilica-Modified Concrete Cast and Cured under Cyclic Freezing/Low Temperatures. Adv. Civ. Eng. Mater. 8, 287-306 (2019).
- 12. U. Sharma, L. Singh, D. Ali, C. Poon, Effect of Particle Size of Silica Nanoparticles on Hydration Reactivity and Microstructure of C-S-H Gel. Adv. Civ. Eng. Mater. 8, 346-360 (2019).
- 13. H. Feng, Z. Wang, M. Sheikh, X. Zhao, D. Gao, M. Hadi, The Effect of Nano-SiO2, Nano-Al2O3, and Nano-Fe2O3 on the Compressive Strength and Workability of Magnesium Phosphate Cement-Based Mortar. Adv. Civ. Eng. Mater. 8, 192-208 (2019).
- 14. M.S. Konsta-Gdoutos, P.A. Danoglidis, M.G. Falara, S.F. Nitodas, Fresh and mechanical properties, and strain sensing of nanomodified cement mortars: the effects of MWCNT aspect ratio, density and functionalization. Cem. Concr. Comp. 82, 137–151 (2017).
- 15. S. Lv, L. Deng, W. Yang, Q. Zhou, Y. Cui, Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites. Cem. Concr. Comp. 66,1-9 (2015).
- 16. E.E. Gdoutos, M.S. Konsta-Gdoutos, P.A. Danoglidis, Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: a fracture mechanics experimental study. Cem. Concr. Comp. 70,110-118 (2016).
- 17. N. Choudhary, S. Hwang, W. Choi, Carbon Nanomaterials: a Review. Handbook of Nanomaterials Properties, Springer, 709-769 (2014).
- 18. R. Yin, J. Sun, Y. Xiang, C.Shang, Recycling and reuse of rusted iron particles containing core-shell Fe-FeOOH for ibuprofen removal: adsorption and persulfatebased advanced oxidation. J. Clean. Prod. 178, 441-448 (2018).
- 19. M.S. Konsta-Gdoutos, G. Batis, P.A. Danoglidis, A.K. Zacharopoulou, E.K. Zacharopoulou, M.G. Falara, S.P. Shah, Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodifi ed OPC mortars. Constr. Build. Mater. 147, 48-57 (2017).
- 20. H. Shao, B. Chen, B. Li, S. Tang, Z. Li, Influence of dispersants on the properties of CNTs reinforced cement-based materials. Constr. Build. Mater. 131, 186-194 (2016).
- 21. S. Chuah, W. Li, S.J. Chen, J.G. Sanjayan, W.H. Duan, Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Constr. Build. Mater. 16, 519–527 (2017).
- 22. D. Hou, T. Yang, J. Tang, S. Li, Reactive force field Molecular dynamics study on graphene oxide reinforced cement composite: functional groups de-protonation, interfacial bonding and strengthening mechanism. Phys. Chem. Chem. Phys. 20, 8773-8789 (2018).
- 23. S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, Q. Zhou, Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121-127(2013).
- 24. B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano-core Effect in Nanoengineered Cementitious Composites, Composites A, 95, 100-109(2017).
- 25. E. Horszczaruk, E. Mijowska, R.J. Kalenczuk, M. Aleksandrzak, S. Mijowska, Nanocomposite of cement/graphene oxide-Impact on hydration kinetics and Young’s modulus. Constr. Build. Mater, 78, 234-242 (2015).
- 26. H. Yang, H. Cui, W. Tang, Z. Li, N. Han, F. Xing, A critical review on research progress of graphene/cement based composites. Comp. Appl. Sci. Manuf. 102, 273-296 (2017).
- 27. H. Du, S. Dai Pang, Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem. Concr. Res. 76, 10-19 (2015).
- 28. D. Hou, Z. Lu, X. Li, H. Ma, Z. Li, Reactive Molecular Dynamics and Experimental Study of Graphene-cement Composites: Structure, Dynamics and Reinforcement Mechanisms. Carbon, 115, 188-208 (2017).
- 29. D. Hou, T. Yang, J. Tang, S. Li, Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: functional group de-protonation, interfacial bonding and strengthening mechanism. Phys. Chem. Chem. Phys. 20, 8773-8789 (2018).
- 30. H. Du, H.J. Gao, S. Dai Pang, Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cem. Concr. Res. 83, 114-123 (2016).
- 31. Z. Lu, D. Hou, H. Ma, T. Fan, Z. Li, Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste. Constr. Build. Mater. 119, 107-112 (2016).
- 32. Z. Lu, D. Hou, L. Meng, G. Sun, C. Lu, Z. Li, Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Adv. 5, 100598-100605 (2015).
- 33. C. Lu, Z. Lu, Z. Li, C.K. Leung, Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites. Constr. Build. Mater. 120, 457-464 (2016).
- 34. Z. Lu, A. Ahanif, G. Sun, R. Liang, P. Parthasarathy, Z. Li, Highly Dispersed Graphene Oxide Electrodeposited Carbon Fiber Reinforced Cement-based Materials with Enhanced Mechanical Properties. Cem. Concr. Compos. 87, 220-228 (2018).
- 35. C. Lu, C.K. Leung, Theoretical evaluation of fiber orientation and its effects on mechanical properties in Engineered Cementitious Composites (ECC) with various thicknesses. Cem. Concr. Res. 95, 240-246 (2017).
- 36. Q. Zheng, B. Han, X. Cui, X. Yu, J. Ou, Graphene-engineered cementitious composites: small makes a big impact. Nanomater. Nanotechnol. 7, 1-18 (2017).
- 37. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society. 80, 1339 (1958).
- 38. A. Hassankhani, S.M. Sadeghzadeh, R. Zhiani, C-C and C-H coupling reactions by Fe3O4/KCC-1/APTPOSS supported palladium-salen-bridged ionic networks as a reusable catalyst. RSC Adv. 8, 8761-8769 (2018).
- 39. S.C. Devi, R.A. Khan, Effect of grapheme oxide on mechanical and durability performance of concrete. J. Build. Eng. 27, 1-12 (2020).
- 40. A. Mohammad, J.G. Sanjayan, W.H. Duan, A. Nazari, Incorporating graphene oxide in cement composites: a study of transport properties. Constr. Build. Mater. 84, 341-347 (2015)
- 41. Q. Wang, J. Wang, C.-X. Lu, B.-W. Liu, K. Zhang, C.-Z. Li, Influence of graphene oxide additions on the microstructure and mechanical strength of cement. N. Carbon Mater. 30, 349-356 (2015).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78084d28-a9d8-4b29-a2d8-01e47f26d4d2