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ON THE UNIFORM PERFECTNESS
OF EQUIVARIANT DIFFEOMORPHISM GROUPS

FOR PRINCIPAL G MANIFOLDS
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Abstract. We proved in [K. Abe, K. Fukui, On commutators of equivariant diffeomor-
phisms, Proc. Japan Acad. 54 (1978), 52–54] that the identity component Diffr

G,c(M)0 of
the group of equivariant Cr-diffeomorphisms of a principal G bundle M over a manifold B
is perfect for a compact connected Lie group G and 1 ≤ r ≤ ∞ (r 6= dim B + 1). In this
paper, we study the uniform perfectness of the group of equivariant Cr-diffeomorphisms for
a principal G bundle M over a manifold B by relating it to the uniform perfectness of the
group of Cr-diffeomorphisms of B and show that under a certain condition, Diffr

G,c(M)0
is uniformly perfect if B belongs to a certain wide class of manifolds. We characterize
the uniform perfectness of the group of equivariant Cr-diffeomorphisms for principal G
bundles over closed manifolds of dimension less than or equal to 3, and in particular we
prove the uniform perfectness of the group for the 3-dimensional case and r 6= 4.
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1. INTRODUCTION

For a Cr-manifold M , let Diffrc(M) denote the group of Cr-diffeomorphisms of M
with compact support(1 ≤ r ≤ ∞). Let Diffrc(M)0 be the identity component of
Diffrc(M) equipped with the compact open Cr-topology. Thurston ([9]) and Mather
([8]) proved that Diffrc(M)0 is perfect if 1 ≤ r ≤ ∞ and r 6= dimM + 1, that is,
it coincides with its commutator subgroup.

Let G be a compact connected Lie group and M be the total space of a prin-
cipal G bundle M over a smooth manifold B. Then we have a canonical smooth
free G action on M and every smooth free G action on M induces a principal G
bundle M over a smooth manifold B. Let DiffrG,c(M) denote the group of equi-
variant Cr-diffeomorphisms ofM with compact support and with the relative topology
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as a subspace of Diffrc(M). Let DiffrG,c(M)0 be the identity component of DiffrG,c(M).
Abe and the author proved in [1] (and also Banyaga in [3]) using the results of
Thurston and Mather that DiffrG,c(M)0 is perfect if 1 ≤ r ≤ ∞, r 6= dimM−dimG+1
and dimM − dimG ≥ 1.

Burago, Ivanov and Polterovich ([4]) and Tsuboi ([10, 11]) studied the uniform
perfectness of Diffrc(M)0, where a group is uniformly perfect if any element in it can
be represented by a product of a bounded number of commutators of its elements.
Indeed, Tsuboi has proved that Diffrc(M)0 is uniformly perfect if 1 ≤ r ≤ ∞ and
r 6= dimM + 1 and M belongs to a wide class C of manifolds (see §3 for C).

In this paper we study the uniform perfectness of DiffrG,c(M)0 for a principal G
bundle M over a manifold B by relating it to the uniform perfectness of the group
of Cr-diffeomorphisms of B and show that under a certain condition, the neccesary
and sufficient condition for DiffrG,c(M)0 to be uniformly perfect is that Diffrc(B)0 is
uniformly perfect. As corollaries, (i) we have by the results of Tsuboi ([10,11]) that for
1 ≤ r ≤ ∞, r 6= dimB+1, DiffrG,c(M)0 is uniformly perfect if dimB ≥ 3, G = Tn and
B ∈ C, and (ii) we characterize the uniform perfectness of the group of equivariant
Cr-diffeomorphisms for principal G bundles over closed manifolds of dimension ≤ 3,
and in particular we prove the uniform perfectness of the group for the 3-dimensional
case and r 6= 4.

2. EQUIVARIANT DIFFEOMORPHISMS OF A MANIFOLD
WITH TRIVIAL G ACTION

Let M be a smooth manifold without boundary on which a compact connected Lie
group G acts smoothly and freely. Then the orbit map π : M → M/G is a principal
G bundle over a smooth manifold B = M/G. Let DiffrG,c(M)0 denote the group of
equivariant Cr-diffeomorphisms of M with compact support, which are G-isotopic to
the identity through equivariant Cr-diffeomorphisms with compact support.

By using the results of Thurston ([9]) and Mather ([8]), Abe and the author in [1]
(and also Banyaga in [3]) proved the following.

Theorem 2.1. If 1 ≤ r ≤ ∞, r 6= dimM − dimG+ 1 and dimM − dimG ≥ 1, then
DiffrG,c(M)0 is perfect.

In this section we consider the uniform perfectness of DiffrG,c(M)0 for the case
M = Rm × G. Let π : Rm × G → Rm be the projection, which induces the group
epimorphism P : DiffrG,c(Rm × G)0 → Diffrc(Rm)0 defined by P (f) = f̄ , where
f(x, g) = (f̄(x), h(x, g)) for x ∈ Rm and g ∈ G.
Theorem 2.2.

1. If 1 ≤ r ≤ ∞, r 6= m+1 and m ≥ 1, then DiffrG,c(Rm×G)0 is uniformly perfect. In
fact, any f ∈ DiffrG,c(Rm×G)0 can be represented by a product of two commutators
of elements in DiffrG,c(Rm ×G)0.

2. If 1 ≤ r ≤ ∞ and m ≥ 1, then any f ∈ kerP can be represented by a product of
two commutators of elements in kerP and DiffrG,c(Rm ×G)0.
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Proof. (1) The proof follows from the proof of [10, Theorem 2.1] of Tsuboi but we
write the proof for the completeness. Take f ∈ DiffrG,c(Rm × G)0. By Theorem 2.1,
f can be represented by a product of commutators as

f =
k∏

i=1
[ai, bi], where ai, bi ∈ DiffrG,c(Rm ×G)0.

Let U be an bounded open set of Rm satisfying that π−1(U) contains the sup-
ports of ai and bi. Take φ̄ ∈ Diffrc(Rm)0 satisfying that {φ̄i(U)}ki=1 are disjoint.
Define φ : Rm × G → Rm × G by φ(x, g) = (φ̄(x), g) for (x, g) ∈ Rm × G. Then
φ ∈ DiffrG,c(Rm ×G)0. We put

F =
k∏

j=1
φj
( k∏

i=j
[ai, bi]

)
φ−j

which is in DiffrG,c(Rm ×G)0. Then we have

φ−1 ◦ F ◦ φ ◦ F−1 = f ◦
( k∏

j=1
φj [aj , bj ]−1φ−j

)
= f ◦

[ k∏

j=1
φjbjφ

−j ,
k∏

j=1
φjajφ

−j
]
.

Thus we have

f = [φ−1, F ] ◦
[ k∏

j=1
φjajφ

−j ,
k∏

j=1
φjbjφ

−j
]
.

That is, any f ∈ DiffrG,c(Rm×G)0 can be represented by two commutators of elements
in DiffrG,c(Rm ×G)0.

(2) By Proposition 6 of [1], any f ∈ kerP can be represented by a product of
commutators of elements in kerP and DiffrG,c(Rm ×G)0 as

f =
k∏

i=1
[ci, di], where ci ∈ kerP and di ∈ DiffrG,c(Rm ×G)0.

Note that it also holds for r = m+ 1. By the similar way as in (1), we can prove that
f ∈ kerP is represented by two commutators of elements in kerP and
DiffrG,c(Rm ×G)0. This completes the proof.

3. UNIFORM PERFECTNESS OF DiffrG,c(M)0

Let G be a compact connected Lie group and π : M → B be a principal G bundle over
an m-dimensional closed Cr manifold B (m ≥ 1), where “closed” means “compact
and without boundary”. Let P : DiffrG(M)0 → Diffr(B)0 be the map defined by
P (f)(x) = π(f(x̂)) for f ∈ DiffrG(M)0 and x ∈ B, x̂ ∈M with π(x̂) = x. Curtis in [5]
proved that P is a surjective homomorphism and a local trivial fibration.

In this section we study the uniform perfectness of DiffrG(M)0 by relating it to the
uniform perfectness of Diffr(B)0. Then we have the following.
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Theorem 3.1.
1. If DiffrG(M)0 is uniformly perfect, then Diffr(B)0 is uniformly perfect.
2. If the number of connected components of kerP is finite and Diffr(B)0 is uniformly

perfect, then DiffrG(M)0 is uniformly perfect.

Proof. (1) Take any f̄ ∈ Diffr(B)0. Then from the result of Curtis ([5]), we have
f ∈ DiffrG(M)0 satisfying P (f) = f̄ . From the assumption, f can be represented as
a product of a bounded number, say k, of commutators;

f =
k∏

j=1
[gj , hj ], where gj , hj ∈ DiffrG(M)0.

Then we have

f̄ = P (f) = P
( k∏

j=1
[gj , hj ]

)
=

k∏

j=1
[P (gj), P (hj)].

(2) Take any f ∈ DiffrG(M)0. Then from the assumption, we have f̄ = P (f) =∏k
j=1[ḡj , h̄j ], where ḡj , h̄j ∈ Diffr(B)0 and k is a bounded number. By using the result

of Curtis ([5]) again, we can take gj and hj in DiffrG(M)0 satisfying P (gj) = ḡj and
P (hj) = h̄j . Then we have (

∏k
j=1[gj , hj ])−1 ◦ f ∈ kerP .

First we consider the case that ψ = (
∏k
j=1[gj , hj ])−1◦f is G-isotopic to the identity

in kerP . We have f =
∏k
j=1[gj , hj ] ◦ ψ and ψ ∈ kerP .

Let {Ui}`+1
i=1 be an open covering of B such that each Ui is a disjoint union of open

balls, where ` is the category number of B (` ≤ m). Let {λi}`+1
i=1 be a partition of

unity subordinate to the covering {Ui}`+1
i=1 . Let ψt(0 ≤ t ≤ 1) be an isotopy in kerP

from ψ0 = identity to ψ1 = ψ. Define hi ∈ kerP (i = 1, 2, . . . , `+ 1) as follows:

h1(p) = ψλ1◦π(p)(p) for p ∈M,

h2(p) = h−1
1 ◦ ψλ1◦π(p)+λ2◦π(p)(p) for p ∈M,

and in general

hi(p) = (h1 ◦ . . . ◦ hi−1)−1 ◦ ψ∑i

j=1
λj◦π(p)(p) for p ∈M (i = 3, . . . , `+ 1).

Then we have the support of hi is contained in Ui (i = 1, 2, . . . , `+ 1) and hi ∈ kerP .
For, any element ψ ∈ kerP has locally (say, on π−1(U) for an open ball U in B)
the form of ψ(x, g) = (x, g · L(ψ)(x)), where L : kerP → Cr(U,G0) is the map
defined by (x, L(ψ)(x)) = ψ(x, e) (see [1]). Thus the isotopy ψt(0 ≤ t ≤ 1) has the
form (x, g · L(ψ)t(x)), where L(ψ)t(x)(0 ≤ t ≤ 1) is a homotopy in Cr(U,G) from
L(ψ)0(x) = e to L(ψ)1(x) = L(ψ)(x). Hence each hi is in kerP . Furthermore we have
ψ = h1 ◦ h2 ◦ . . . ◦ h`+1.

As Ui is a disjoint union of open balls diffeomorphic to the unit open ball intDm, we
have only to prove the case that Ui is intDm in order to prove Theorem 3.1(2). Since π
is trivial over Ui, π−1(Ui) is G-diffeomorphic to Ui×G. Thus we may assume that each
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hi is contained in kerP for the homomorphism P : DiffrG,c(Rm ×G)0 → Diffrc(Rm)0
in §2. From Theorem 2.2(2), each hi can be represented by a product of two com-
mutators of elements in kerP and DiffrG,c(Rm × G)0 if 1 ≤ r ≤ ∞. Thus ψ can be
represented by a product of 2(`+1) commutators of elements in kerP and DiffrG(M)0.
Hence f can be represented by a product of k + 2(`+ 1) commutators of elements in
DiffrG(M)0, where k and ` are bounded numbers.

Next we consider the case that ψ is not connected to the identity in kerP . Let a be
the number of the connected components of kerP . Take elements, say g1, . . . , ga, from
each connected component of kerP and fix them. Then from Theorem of [1], each gi
can be written by ti commutators of elements in DiffrG(M)0. Put t = max{t1, . . . , ta}.
For any element g ∈ kerP , there exists some i (i = 1, . . . , a) satisfying that g and
gi are in the same connected component of kerP . Since g ◦ (gi)−1 is in the identity
component of kerP , g can be written by at most 2(`+ 1) + t commutators. Thus for
any element f ∈ DiffrG(M)0, above ψ can be written by 2(` + 1) + t commutators.
Hence f ∈ DiffrG(M)0 can be written by k + 2(`+ 1) + t commutators of elements in
DiffrG(M)0. Since k, ` and t are bounded numbers, this completes the proof.

The fibration map P : DiffrG(M)0 → Diffr(B)0 induces the homomorphism
between the fundamental groups P∗ : π1(DiffrG(M)0, 1)→ π1(Diffr(B)0, 1).

Corollary 3.2. Suppose that the cokernel of the homomorphism

P∗ : π1(DiffrG(M)0, 1)→ π1(Diffr(B)0, 1)

is finite. Then DiffrG(M)0 is uniformly perfect if Diffr(B)0 is uniformly perfect.

Proof. The fibration map P : DiffrG(M)0 → Diffr(B)0 induces the following exact
sequence of homotopy groups:

. . .→ π1(DiffrG(M)0, 1)→ π1(Diffr(B)0, 1)→ π0(kerP )→ π0(DiffrG(M)0) = 1.

From the assumption P∗ : π1(DiffrG(M)0, 1) → π1(Diffr(B)0, 1) has finite cokernel.
Thus π0(kerP ) is finite, that is, the connected components of kerP is finite. The proof
follows from Theorem 3.1(2).

4. UNIFORM PERFECTNESS OF DiffrTn(M)0

In this section we study the uniform perfectness of DiffrTn(M)0 for principal
Tn-bundles over closed manifolds B. Then we have the following.

Theorem 4.1. Suppose that dimB ≥ 3. Then DiffrTn(M)0 is uniformly perfect if
Diffr(B)0 is uniformly perfect.

Proof. Take any f ∈ DiffrTn(M)0. Then from the assumption, we have f̄ = P (f) =∏k
j=1[ḡj , h̄j ], where ḡj , h̄j ∈ Diffr(B)0 and k is a bounded number. By using the result

of Curtis ([5]) again, we can take gj and hj in DiffrTn(M)0 satisfying P (gj) = ḡj and
P (hj) = h̄j . Then we have ψ = (

∏k
j=1[gj , hj ])−1 ◦ f ∈ kerP .
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Let {Ui}`+1
i=1 and {Vi}`+1

i=1 be open coverings of B such that each Ui and Vi are
disjoint unions of open balls and Ui ⊂ Vi, where ` is the category number of B (` ≤ m).

Since π is trivial over V1, πj(Tn) = 1 (j ≥ 2) and m ≥ 3, we can deform ψ over V1
to ψ1 ∈ kerP satisfying that ψ1 = ψ on U1 and ψ1 is the identity near the boundary
of V 1. For, V 1−U1 is homeomorphic to Sm−1× [0, 1] and ψ |∂(U1) (x, ·) : ∂(U1)→ Tn

is homotopic to the constant map e because πj(Tn) = 1 (j ≥ 2) and m ≥ 3. Hence
ψ can be deformed in V1 to the identity near the boundary of V 1 fixing ψ on U1(see
the proof of Theorem 3.1(2)).

Next we get ψ2 ∈ kerP satisfying that ψ2 = ψ1 on U2 and ψ2 is the identity
near the boundary of V 2 by performing the same procedure as above for (ψ1)−1 ◦ ψ
and V2. After ` + 1 times procedures, we have ψ1, . . . , ψ`+1(∈ kerP ) satisfying that
ψ = ψ1 ◦ . . . ◦ ψ`+1 and each ψi is supported in Vi. Since each ψi is in kerP , we
have from Theorem 2(2) that ψi can be represented by a product of two commu-
tators of elements in kerP and DiffrTn,c(Rm × Tn)0 if 1 ≤ r ≤ ∞. Thus ψ can
be represented by a product of 2(` + 1) commutators of elements in kerP and
DiffrTn(M)0. Hence f can be represented by a product of k + 2(` + 1) commuta-
tors of elements in DiffrTn(M)0, where k and ` are bounded numbers. This completes
the proof.

Since π2(G) = 0 for any Lie group G and Diffr(B)0(r 6= 4) is uniformly perfect
when B is a 3 dimensional closed manifold ([4, 10]), the above proof induces the
following.

Corollary 4.2. Suppose that B is a 3 dimensional closed manifold. Then DiffrG(M)0
is uniformly perfect for r 6= 4.

We say that a manifold B belongs to a class C if B is one of the following:

1. an m dimensional closed manifold (m 6= 2, 4) and
2. an m dimensional closed manifold which has a handle decomposition without

handles of the middle index (m = 2, 4).

Then Tuboi ([10,11]) proved the following.

Theorem 4.3. If B ∈ C and 1 ≤ r ≤ ∞, r 6= dimB+ 1, then Diffrc(B)0 is uniformly
perfect.

Corollary 4.4. Let π : M → B be a principal Tn bundle over an m-dimensional
closed manifold B. Suppose that m ≥ 3 and B belongs to the class C. If 1 ≤ r ≤ ∞,
r 6= m+ 1, then DiffrTn(M)0 is uniformly perfect.

Proof. The proof follows from Theorem 4.1 and Theorem 4.3.

Corollary 4.5. Let M be a closed Tn-manifold with one orbit type. Suppose that the
orbit manifold M/G belongs to the class C. If 1 ≤ r ≤ ∞, r 6= dimM − dimG + 1
and dimM − dimG ≥ 3, then DiffrTn(M)0 is uniformly perfect.

Proof. The proof follows from Corollary of [1] and Corollary 4.4.
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5. UNIFORM PERFECTNESS OF DiffrG(M)0 FOR PRINCIPAL G-BUNDLES
OVER LOW DIMENSIONAL CLOSED MANIFOLDS

In this section we consider the uniform perfectness of DiffrG(M)0 for principal
G-bundles over closed manifolds B of dimension ≤ 2.

First we consider the case of DiffrG(M)0 for principal G-bundles over S1. Since
any principal G-bundle over S1 is trivial, kerP is connected for a compact connected
Lie group G. Furthermore, since Diffr(S1)0 is uniformly perfect(r 6= 2), we have the
following from Theorem 3.1(2).

Theorem 5.1. Let π : M → S1 be a principal G bundle over S1. Then DiffrG(M)0
is uniformly perfect for r 6= 2.

Next we study the uniform perfectness of DiffrG(M)0 for principal G-bundles over
closed orientable surfaces not homeomorphic to T 2. Then we have the following.

Theorem 5.2. Let π : M → B be a principal G bundle over a 2 dimensional closed
orientable manifold B.

1. When B is the 2-sphere S2, DiffrG(M)0 is uniformly perfect for r 6= 3.
2. When B is a closed orientable surface not homeomorphic to S2, T 2, DiffrG(M)0 is

uniformly perfect if and only if Diffr(B)0 is uniformly perfect.

Proof. (1) For B = S2, we have π1(Diffr(B)0, 1) ∼= π1(SO(3), 1) ∼= Z2. Then the
connected components of kerP are at most two. Thus (1) follows from Theorem
3.1(2) and the uniform perfectness of Diffr(S2)0 (r 6= 3).

(2) When B is a closed surface not homeomorphic to S2, T 2, Diffr(B)0 is con-
tractible. Thus the fibration P : DiffrG(M)0 → Diffr(B)0 is trivial. Then kerP is
connected. Hence (2) follows from Theorem 3.1(2).

Finally we have the following problem.

Problem 5.3. Discuss the uniform perfectness for the case B = T 2.
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