PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the Effect of Sisal Fibre Content on Durability Properties of Lightweight Foamed Concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lightweight foamed concrete is greatly permeable, and its durability performance reduce with rising in the number of voids. In turn to improve its durability properties, the solid matrix of lightweight foamed concrete can be adjusted by incorporating several plant-based fibres. The effect of sisal fibre in lightweight foamed concrete was not explored before in the current body of knowledge. Therefore, there is some uncertainty considering the mechanism by which and the extent to which the sisal fibre may impact lightweight foamed concrete durability properties. Thus, this laboratory study concentrates on distinguishing the potential employment of sisal fibre into lightweight foamed concrete. This investigation aims to establish the durability performance of lightweight foamed concrete with the presence of sisal fibre. Densities of 800 and 1600 kg/m3 were made and assesed. Different weight fractions of sisal fibre of 0.2%, 0.4%,0.6% and 0.8% were utilized. There were four durability perfomance of lightweight foamed concrete were evaluated such as shrinkage, ultrasonic pulse velocity (UPV), porosity and water absorption capacity. The experimental results had indicated that the addition of 0.6% of sisal fibre gave the optimum results for the durability properties. At 0.6% weight fraction of sisal fibre, the fibres reached maximum compaction in the cement matrix, which stemmed in exceptional mix regularity. Further than 0.6% inclusion of sisal fibre, accumulation and non-regularity scattering of fibres was detected, which led to reduction in entire parameters assessed.
Twórcy
  • School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Penang, Malaysia
Bibliografia
  • 1. Elshahawi M., Alex H., Mike S. Infra lightweight concrete: A decade of investigation (a review). Structural Concrete. 2021; 22: E152-E168.
  • 2. Mydin, M.A.O. Preliminary studies on the development of lime-based mortar with added egg white. International Journal of Technology. 2017; 8(5), 800-810.
  • 3. Serri E., Othuman Mydin M.A., Suleiman M.Z. Thermal properties of Oil Palm Shell lightweight concrete with different mix designs. Jurnal Teknologi. 2014; 70(1): 155-159.
  • 4. Jones M.R., Zheng L., Ozlutas K. Stability and instability of foamed concrete. Magazine of Concrete Research. 2016; 68(11): 542-549.
  • 5. Zhang Z., Provis J.L., Reid A., Wang H. Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials. 2014; 56: 113–127.
  • 6. Amran Y.H.M., Farzadnia N., Abang Ali A.A. Properties and applications of foamed concrete; a review. Construction and Building Materials. 2015; 101: 990-1005.
  • 7. Nensok Hassan M., Othuman Mydin M.A., Awang H. Fresh state and mechanical properties of ultralight-weight foamed concrete incorporating alkali treated banana fibre. 2022; 84(1):117-128.
  • 8. Raj B., Dhanya S., Mini K.M., Amritha R. Mechanical and durability properties of hybrid fiber reinforced foam concrete. Construction and Building Materials. 2020; 245: 118373.
  • 9. Othuman Mydin M.A., Sahidun N.S., Mohd Yusof M.Y., Noordin N.M. Compressive, flexural and splitting tensile strengths of lightweight foamed concrete with inclusion of steel fibre. Jurnal Teknologi. 2015; 75(5): 45-50.
  • 10. Asim M., Ghulam M.U, Hafsa J., Ali R., Uzair H., Aamir N.S., Nasir H., Syed M.A. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. Journal of Building Engineering. 2020; 31: 101411.
  • 11. Norgaard J., Othuman Mydin M.A. Drywall ther-mal properties exposed to high temperatures and fire condition. Jurnal Teknologi. 2013; 62(1): 63-68.
  • 12. Gencel O., Oguz M., Gholampour A., Ozbakkaloglu T. Recycling waste concretes as fine aggregate and fly ash as binder in production of thermal insulating foam concretes. Journal of Building Engineering. 2021; 38: 102232.
  • 13. Mydin, M.A.O., Rozlan, N.A, Md Sani N., Ganesan S. Analysis of micro-morphology, thermal conductivity, thermal diffusivity and specific heat capacity of coconut fibre reinforced foamed concrete. MATEC Web of Conferences. 2014; 17: 01020.
  • 14. Sang G., Yiyun Z., Gang Y., Haobo Z. Preparation and characterization of high porosity cement-based foam material. Construction and Building Materials. 2015; 91: 133-137.
  • 15. Mydin, M.A.O, Musa M., Abdul Ghani A.N. Fiber glass strip laminates strengthened lightweight foamed concrete: Performance index, failure modes and microscopy analysis. In AIP Conference Proceedings. 2018; 2016(1): 020111.
  • 16. Benmansour N., Boudjemaa A., Abdelkader G., Abdelhak K., Aberrahim B. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy and Buildings, 2014; 81: 98-104.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77fa2b48-08df-4a0a-a257-e21c9c5a5c42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.