Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let (M,n, Sn)n≥0 be a Markov random walk whose driving chain (Mn)n≥0 with general state space (ℒ,Ϭ) is ergodic with unique stationary distribution ξ. Providing n−1 Sn→o in probability under Pξ, it is shown that the recurrence set of (Sn−γ(Mo) +γ(Mn))n≥o forms a closed subgroup of Rdepending on the lattice-type of (Mn, Sn)n≥o. The so-called shift function γ is bounded and appears in that lattice-type condition. The recurrence set of (Sn)n≥o itself is also given but may lookmore complicated depending on γ. The results extend the classical recurrence the orem for random walks with i.i.d. increments and further sharpenresults by Berbee, Dekking and others on the recurrence behavior of random walks with stationary increments.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
123--134
Opis fizyczny
Bibliogr.11 poz.
Twórcy
autor
Bibliografia
- [1] G. Alsmeyer, The Markov renewal theorem and related results, Markov Proc. Related Fields 3 (1997), pp. 103-127.
- [2] H. C. P. Berbee, Random Walks with Stationary Increments and Renewal Theory, Math. Centrum Tract 112, Amsterdam 1979.
- [3] L. Breiman, Probability, Addison-Wesley, Reading, Massachusetts, 1968.
- [4] K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of independent random variables, Mem. Amer. Math. Soc. 6 (1951), pp. 1-12.
- [5] F. M. Dekking, On transience and recurrence of generalized random walks, Z. Wahrscheinlichkeitstheorie verw. Gebiete 61 (1982), pp. 459-465.
- [6] S. Lalley, A renewal theorem for a class of stationary sequences, Probab. Theory Related Fields 72 (1986), pp. 195-213.
- [7] D. Ornstein, Random walks, Trans. Amer. Math. Soc. 138 (1969}, pp. 1-60.
- [8] M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Springer, Berlin 1971.
- [9] V. M. Shurenkov, On the theory of Markov renewal, Theory Probab. Appl. 29 (1984), pp. 247-265.
- [10] C. J. Stone, On the potential operator for one-dimensional recurrent random walks, Trans. Amer. Math. Soc. 136 (1969), pp. 427-445.
- [11] H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77f8895f-9538-41be-a6fd-96fa43787a68