PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation on the piezoelectric energy harvester as a self-powered vibration sensor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an experimental study of a system consisting of a piezoelectric energy harvesting device, Graetz bridge rectifier, capacitor, voltage comparator and radio transmitter. In the presented experimental study, the recovered electrical energy is accumulated in the capacitor and is used to send signals by a radio transmitter. In the first part, the application of piezoelectric energy harvesting devices based on the cantilever beam in wireless monitoring systems is discussed. In the second part, the mathematical model of energy conversion in the piezoelectric energy harvesting devices is presented. In the third part, the characteristics obtained during laboratory research are presented.
Rocznik
Strony
687--699
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Cracow, Poland
Bibliografia
  • 1. Chan T.H., Yu L., Tam H.Y., Ni Y.Q., Liu S.Y., Chung W.H., Cheng L.K., 2006, Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation, Engineering Structures, 28, 5, 648-659
  • 2. De Roeck G., Peeters B., Maeck J., 2000, Dynamic monitoring of civil engineering structures, Proceedings of IASS-IACM
  • 3. Deraemaeker A., Nasser H., Benjeddou A., Preumont A., 2009, Mixing rules for the piezoelectric properties of macro fiber composites (MFC), Journal of Intelligent Material Systems and Structures, 20, 12, 1475-1482
  • 4. EH300A datasheet, 2017, http://www.aldinc.com/pdf/EH300.pdf
  • 5. Ferrari M., Ferrari V., Guizzetti M., Marioli D., Taroni A., 2008, Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems, Sensors and Actuators A: Physical, 142, 1, 329-335
  • 6. Goy O., Mueller R., Gross D., 2006, Interaction of point defects in piezoelectric materials – numerical simulation in the context of electric fatigue, Journal of Theoretical and Applied Mechanics, 44, 4, 819-836
  • 7. Kim S., Pakzad S., Culler D., Demmel J., Fenves G., Glaser S., Turon M., 2007, Health monitoring of civil infrastructures using wireless sensor networks, Proceedings of 6th International Symposium on Information Processing in Sensor Networks, 254-263
  • 8. Lee S., Young B. D., Jung B.C., 2009, Robust segment-type energy harvester and its application to a wireless sensor, Smart Materials and Structures, 18, 9, 095021
  • 9. Li S., Crovetto A., Peng Z., Zhang A., Hansen O., Wang M., Wang F., 2016, Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency, Sensors and Actuators A: Physical, 247, 547-554
  • 10. Lynch J. P., Lohg K. J., 2006, A summary review of wireless sensors and sensor networks for structural health monitoring, The Shock and Vibration Digest, 38, 2, 91-128
  • 11. Nye J.F., 1957, Physical Properties of Crystals, Oxford at the Clarendon Press, Oxford
  • 12. Pietrzakowski M., 2000, Multiple piezoelectric segments in structural vibration control, Journal of Theoretical and Applied Mechanics, 38, 1, 35-50
  • 13. Przybyłowicz P.M., 1999, Application of piezoelectric elements to semiadaptive dynamic eleminator of torsional vibration, Journal of Theoretical and Applied Mechanics, 37, 2, 319-334
  • 14. Roundy S., Wright P. K., 2004, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures, 13, 5, 1131-1142
  • 15. Roundy S., Wright P. K., Rabaey J. M., 2003, Energy Scavenging for Wireless Sensor Networks, Springer Science Business Media, New York
  • 16. Smart Material Corp., 2017, Macro-fibre composites technical data, www.smartmaterial.com
  • 17. Song H. J. Choi Y. T., Wereley N. M., Purekar A., 2014, Comparison of monolithic and composite piezoelectric material-based energy harvesting devices, Journal of Intelligent Material Systems and Structures, 25, 14, 1825-1837
  • 18. Soobum L., Byeng D.Y., Byung C.J., 2009, Robust segment-type energy harvester and its application to a wireless sensor, Smart Materials and Structures, 18, 9, 095021
  • 19. Upadrashta D., Yang Y., 2016, Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications, Sensors and Actuators A, 244, 223-232
  • 20. Woias P., Wischke M., Eichorn Ch., Fuchs B., 2009, An energy-autonomous wireless temperature monitoring system powered by piezoelectric energy harvesting, Procedings of PowerMEMS, 209-212
  • 21. Yang Y., Tang L., Li H., 2009, Vibration energy harvesting using macro-fiber composites, Smart Materials and Structures, 18, 11, 115025
  • 22. Yu A., Jiang P., Wang Z.L., 2012, Nanogeneratoras self-powered vibration sensor, Nano Energy, 1, 3, 418-423
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77f80baa-0bca-45a8-aa0c-085b761ca677
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.