PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern external beam radiotherapy of prostate cancer

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nowoczesne metody leczenia wiązkami zewnętrznymi pacjentów z nowotworem gruczołu krokowego
Języki publikacji
EN
Abstrakty
EN
Prostate cancer is the most commonly diagnosed cancer in modern societies. There are three methods of prostate cancer treatment: surgery and radiotherapy (either external radiotherapy or brachytherapy). Last 10 years radiotherapy developed very much. New methods of treatment allow for diminishing the total treatment time, making the irradiation almost fully safe. The results treatment of surgery and radiotherapy are very similar. The choice of treatment method dependence on the decision of a patient. In this paper new achievements in external radiotherapy are presented.
PL
Nowotwór gruczołu krokowego jest najczęściej diagnozowanym nowotworem w populacji mężczyzn w krajach rozwiniętych. Obecnie u pacjentów z nowotworem gruczołu krokowego można zastosować chirurgię, radioterapię wiązkami zewnętrznymi i brachyterapię. W ciągu ostatnich 10 lat nastąpił bardzo szybki rozwój leczenia z użyciem promieniowania jonizującego. Najnowsze metody umożliwiają skrócenie całkowitego czasu leczenia i zapewniają niemal w pełni bezpieczne leczenie. Wyniki chirurgii i radioterapii są bardzo podobne. Wybór metody leczenia zależy od preferencji pacjenta. W tym artykule zostały przedstawione osiągnięcia radioterapii wiązkami zewnętrznymi w zastosowaniu u pacjentów z nowotworem gruczołu krokowego.
Rocznik
Strony
173--177
Opis fizyczny
Bibliogr. 53 poz., tab.
Twórcy
  • Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical Physics Department, ul. Roentgena 5, 02-781 Warsza
  • Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical Physics Department, ul. Roentgena 5, 02-781 Warsza
  • Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Urology Department, ul. Roentgena 5, 02-781 Warszawa
  • Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Urology Department, ul. Roentgena 5, 02-781 Warszawa
  • Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Brachytherapy Department, ul. Roentgena 5, 02-781 Warszawa
Bibliografia
  • 1. F.C. Hamdy, J.L. Donovan, J.A. Lane,et al.: 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer, NEJM, 375(15), 2016, 1415-1424.
  • 2. L .Chen, Q. Li, Y. Wang, et al.: Comparison on efficacy of radical prostatectomy versus external beam radiotherapy for the treatment of localized prostate cancer, Oncotarget, 8(45), 2017, 79854-79863.
  • 3. N.G. Zaorsky, S. Keith, T. Shaikh, et al.: Impact of Radiation Therapy Dose Escalation on Prostate Cancer Outcomes and Toxicities, Am J Clin Oncol., 41, 2018, 409-415.
  • 4. A. Kalbasi, J. Li, A. Berman, et al.: Dose-Escalated Irradiation and Overall Survival in Men with Nonmetastatic Prostate Cancer, JAMA Onc, 7, 2015, 897-906.
  • 5. O. Cahlon, M. Zelefsky, A. Shippy: Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes, Int J Radiat Onc Biol Phys, 71(2), 2008, 330-337.
  • 6. I.R. Vogelius, S.M. Bentzen: Dose Response and Fractionation Sensitivity of Prostate Cancer After External Beam Radiation Therapy: A Meta-analysis of Randomized Trials, Int. J. Radiat. Onc. Biol. Phys., 100(4), 2018, 2059-2065.
  • 7. N.G. Zaorsky, N. Ohri, T.N .Showalter, A.P. Dicker, R.B. Den: Systematic review of hypofractionated radiation therapy for prostate cancer, Cancer Treat Rev., 39(7), 2013, 728-736.
  • 8. B.F. Koontz, A. Bossi, C. Cozzarini, T. Wiegel, A. D’Amico: A systematic review of hypofractionation for primary management of prostate cancer, Eur Urol, 68(4), 2015, 683-691.
  • 9. J.P. Weiner, D. Schwartz, M. Shao, et. al.: Stereotactic radiotherapy of the prostate: fractionation and utilization in the USA, Radiat. Oncol J., 35(2), 2017, 137-143.
  • 10. https://www.americanbrachytherapy.org/guidelines/HDRTaskGroup.pdf
  • 11. C. Rasch, II. Barillot, P. Remeire, et al.: definition of the prostate in CT and MRI: a multi-observer study, Int J rad Oncol Biol Phys, 41 (1), 1999, 57-66.
  • 12. G.M. Villers, K. Van Vaerenbergh, L. Vakaet, et al.: Interobserver Delineation variation Using CT versus Combined CT+MRI in Intensity Modulated Radiotherapy for Prostate Cancer, Strahlentherapie und Oncology, 7, 2005, 424-430.
  • 13. C.V. Dinh, P. Steenbergen, G. Ghobadi, et al.,: Magnetic resonance imaging for prostate cancer radiotherapy, Physica Medica, 32, 2016, 446-451.
  • 14. T.F. Mutanga, H.C. de Boer, G.J. van der Wielen, et al.: Margin evaluation in the presence of deformation, rotation, and translation in prostate and the entire seminal vesicle irradiation with daily marker-based setup corrections, Int J Radiat Oncol Biol Phys, 81(4), 2011, 1160-1167.
  • 15. D. Palma, E. Vollans, K. James, et al.: Volumetric Modulated Arc Therapy Technique for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy, Int J Radiat Oncol Biol Phys, 72(4), 2008, 996-1001.
  • 16. K. Gysen, A. Kneebone, F. Alfieri, et al.: Feasibility of and rectal dosimetry improvement with the use of SpaceOAR, J Med Imaging Radiat Oncol., 58(4), 2014, 511-516.
  • 17. N. Mariados, J. Sylvester, D. Shan, et al. Hydrogel Spacer Prospective Multicenter Randomized Controlled Pivotak Trial: Dosimetric and Clinical Effects of Perirectal Spacer Application in Men Undergoing Prostate Image Guided Intensity Modulated radiation Therapy, Int J Radiat Oncol Biol Phys, 92(5), 2015, 971-977.
  • 18. A.J. Bayley, C.N. Catton, T. Haycocks, et al.: A randomized trial of supine vs. prone positioning in patients undergoing escalated dose conformal radiotherapy for prostate cancer, Radiotherapy and Oncology, 70, 2004, 37-44.
  • 19. P.Y. Song, M. Washington, R. Hamilton, et al.: A comparison of four patient immobilization devices in the treatment of prostate cancer patients with three dimensional conformal radiotherapy, Int J Radiat Oncol Biol Phys, 34(1), 1996, 213-229.
  • 20. M. Ng, E. Brown, A. Williams, M. Chao, N. Lawrentschuk, R. Chee: Fiducial markers and spacers in prostate radiotherapy: current applications, BJU International , 2, 2014, 13-20.
  • 21. J.M. Balter, J.N. Wright, L.J. Newell, et al.: Accuracy of a wireless localization system for radiotherapy, Int J Radiat Oncol Biol Phys, 61, 2005, 933-937.
  • 22. A.N. Kotte, P. Hofman, J.J. Lagendijk, M. van Vulpen, U.A. van der Heide: Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers, Int J Radiat Oncol Biol Phys., 69, 2007, 419-425.
  • 23. D. Skarsgard, P. Cadman, A. El-Gayed, R. Pearcey, P. Tai, N. Pervez, et al.: Planning target volume margins for prostate radiotherapy using daily electronic portal imaging and implanted fiducial markers, Radiat Oncol, 5, 2010, 52.
  • 24. J.A. Tanyi, T. He, P.A. Summers, et al.: Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: Role of daily inter- and intrafraction motion, Int J Radiat Oncol Biol Phys, 78, 2010, 1579-1585.
  • 25. Z. Gao, D. Wilkins, L. Eapen: A study of prostate delineation referenced against a gold standard created from the visible human data, Radiotherapy and Oncology, 85, 2007, 239-246
  • 26. J.E. McNeal, E.A. Redwine, F.S. Freiha, T.A. Stamey: Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread, Am J Surg Pathol., 12, 1988, 897-906.
  • 27. P.W. McLaughlin, C. Evans, M. Feng, V. Narayana: Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy, Int J Radiat Oncol Biol Phys, 76(2), 2010, 369-378.
  • 28. C.C. Parker, T. Damyonovich, M. Haycocks, et al:. Magnetic resonance imaging in radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration, Radiother Oncol, 66, 2003, 217-224.
  • 29. M. Debois, R. Oyen, F. Maes, et al.: The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer, Int J Radiat Oncol Biol Phys., 45, 1999, 857-865.
  • 30. C. Fiorino, R. Valdagni, T. Rancati, et al.: Dose volume effects for normal tissues in external radiotherapy: Pelvis, Radiother Oncol., 93, 2009, 153-167.
  • 31. J.M. Michalski, H. Gay, A. Jackson, et al.: Radiation dose-volume effects in radiation-induced rectal injury, Int J Radiat Oncol Biol Phys., 76, 2010, 123-129.
  • 32. G. Fellin, C. Fiorino, T. Rancati, et al.: Clinical and dosimetric predictors of late rectal toxicity after conformal radiation for localized prostate cancer: Results of a large multicenter observational study, Radiother Oncol., 93, 2009, 197-202.
  • 33. S. Marzi, B. Saracino, M.B. Petragoni, et al.: Modeling of alpha/beta for late rectal toxicity from a randomized phase II study: conventional versus hypofractionated scheme for localized prostate cancer, J Exp Clin Cancer Res., 28, 2009, 117.
  • 34. J.F. Fowler: Brief summary of radiobiological principles in fractionated radiotherapy, Semin Radiat Oncol., 2, 1992, 16-21.
  • 35. W. Schaake, A. van der Schaaf, L.V. van Dijk: Normal tissue complication probability (NTCP) models for late rectal bleeding, stool frequency and fecal incontinence after radiotherapy in prostate cancer patients, Rad Onc., 119(3), 2016, 382-397.
  • 36. G. Defraene, L. Van den Bergh, A. Al-Mamgani, et al.: The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer, Int J Radiat Oncol Biol Phys, 82, 2012, 1233-1242.
  • 37. G. Mok, E. Benz, J.P. Vallee, R. Miralbell, T. Zilli: Optimization of radiation therapy techniques for prostate cancer with prostate-rectum spacers: a systematic review, Int J Radiat Oncol Biol Phys., 90, 2014, 278-288.
  • 38. P.J. Prada, J. Fernandez, A.A. Martinez, et al.: Transperineal injection of hyaluronic acid in anterior perirectal fat to decrease rectal toxicity from radiation delivered with intensity modulated brachytherapy or EBRT for prostate cancer patients, Int J Radiat Oncol Biol Phys., 69, 2007, 95-102.
  • 39. Y. Levy, A. Paz, R.B. Yosef, B.W. Corn, B. Vaisman, S. Shuhat, et al.: Biodegradable inflatable balloon for reducing radiation adverse effects in prostate cancer, J Biomed Mater Res B Appl Biomater, 91, 2009, 855-867.
  • 40. B.W. Fischer-Valuck, A. Chundury, H. Gay, et al.: Hydrogel spacer distribution within the perirectal space in patients undergoing radiotherapy for prostate cancer: Impact of spacer symmetry on rectal dose reduction and the clinical consequences of hydrogel infiltration into the rectal wall, Practical Radiation Oncology, 7(3), 2017, 195-202.
  • 41. L.I. Karsh, E.T. Gross, C.M. Pieczonka, et al.: Absorbable Hydrogel Spacer Use in Prostate Radiotherapy: A Comprehensive Review of Phase 3 Clinical Trial Published Data, Urology, 2017, 1-6.
  • 42. O. Casares-Magaz, V. Moiseenko, A. Hopper, et al.: Association between volume changes and spatial dose metrics for the urinary bladder during local pelvic irradiation for prostate cancer, Acta Onc, 56(6), 2017, 884-890.
  • 43. A.W. Pederson, J. Fricano, D. Correa, et al.: Late toxicity after Intensity-Modulated radiation Therapy for localized prostate cancer: an exploration of dose-volume histogram parameters to limit genitourinary and gastrointestinal toxicity, Int J Radiat Oncol Biol Phys., 82(1), 2012, 235-241.
  • 44. A.N. Viswanathan, E.D. Yorke, L.B. Marks, et al.: Radiation dose– volume effects of the urinary bladder, Int J Radiat Oncol Biol Phys., 76, 2010, 116-122.
  • 45. C.M. Marion, M.J. Zelefsky, J. Paoli, et al.: Predictors of late femoral head toxicity after high-dose 3D-conformal radiotherapy and intensity modulated radiotherapy, Int J Radiat Oncol Biol Phys., 54(2), 2002, 111.
  • 46. E.M. Quan, X. Li, Y. Li, et al.: A Comprehensive Comparison of IMRT and VMAT Plan Quality for Prostate Cancer Treatment, Int J Radiation Oncol Biol Phys., 83,(4), 2012, 1169-1178.
  • 47. M.T.M. Davidson, S.J. Blake, D.L. Batchelar, at al.,: Assessing the Role of Volumetric Modulated Arc Therapy (VMAT) Relative to IMRT and Helical Tomotherapy in the Management of Localized, Locally Advanced, and Post-Operative Prostate Cancer, Int J Radiation Oncol Biol Phys., 80(5), 2011, 1550-1558.
  • 48. W. Curtis, M. Khan, A. Magnelli, et al.: Relationship of Imaging Frequency and Planning Margin to Account for Intrafraction Prostate Motion: Analysis Based on Real-Time Monitoring Data, Int J Rad Oncol Phys, 85(3), 2012, 700-706.
  • 49. H. Badakhshi, P. Wust, V. Budach, R. Graf: Image-guided radiotherapy with implanted markers and kilovoltage imaging and 6-dimensional position corrections for intrafractional motion of the prostate, Anticancer Res., 33, 2013, 4117-4121.
  • 50. F. Alongi, L. Cozzi, S. Arcangeli, et al.: Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study, Radiat Oncol., 8(1), 2013, 171.
  • 51. N.G. Zaorsky, J.D. Palmer, M.D. Hurwitz, et al.: What is the ideal radiotherapy dose to treat prostate cancer? A meta-analysis of biologically equivalent dose escalation, Radiat Oncol., 115, 2015, 295-300.
  • 52. D.R. Henderson, A.C. Tree, N.J. van As: Overview: stereotactic body radiotherapy for prostate cancer, Clinical Oncol., 27, 2015, 270-279.
  • 53. F. Alongi, L. Cozzi, S. Arcangeli, et al.: Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study, Radiat. Oncol., 8(1), 2013, 171.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77f7bc08-6431-43be-bc8d-0ead9167ae72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.