PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing pitting corrosion inhibition of AISI 304 stainless steel using a green frankincense-modified ferric chloride solution

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To inhibit pitting corrosion of AISI 304 stainless steel (SS), the effect of different percentages of frankincense addition to a 0.5 M ferric chloride solution was explored in this work for the first time. The samples were investigated for pitting corrosion susceptibility via electrochemical noise (EN) tests, where the current and potential noises were recorded for 10000 seconds, and potentiodynamic polarization. The frequency domain of EN data was analyzed using power spectral density (PSD). Frankincense addition to the ferric chloride solution effectively reduced the pitting corrosion of AISI 304 SS. The pitting inhibition was concluded from the high fluctuations in current noises over the test period, its decreasing amplitude, the greater positive potential, the lower current values, and the lower spectral noise and noise resistances with increasing frankincense additions. Optical microscope images supported pitting inhibition with frankincense addition, where pits decreased in number per mm2 and size. A significant decrease in the pit size and pits mm−2 was observed with the 10 wt.% frankincense addition. It was attributed to the adsorption of the inhibitor on the stainless steel surface, inhibiting the adsorption of chloride ions. Additionally, frankincense addition reduced the corrosion current and increased the corrosion potential positively.
Wydawca
Rocznik
Strony
85--98
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • Department of Materials Engineering, Al-Balqa Applied University, Al-Salt 19117, Jordan
  • Department of Materials Engineering, Al-Balqa Applied University, Al-Salt 19117, Jordan
  • Department of Materials Engineering, Al-Balqa Applied University, Al-Salt 19117, Jordan
Bibliografia
  • [1] Serdaroğglu G, Kaya S. Organic and inorganic corrosion inhibitors. In: Verma C, Hussain CM, Ebenso EE, editors. Organic corrosion inhibitors. USA: John Wiley & Sons, Inc.; 2021. p. 59.
  • [2] Mobin M, Basik M, Shoeb M. A novel organic-inorganic hybrid complex based on Cissus quadrangularis plant extract and zirconium acetate as a green inhibitor for mild steel in 1 M HCl solution. Appl Surf Sci. 2019;469:387–403. doi: 10.1016/j.apsusc.2018.11.008
  • [3] Luo X, Pan X, Yuan S, Du S, Zhang C, Liu Y. Corrosion inhibition of mild steel in simulated seawater solution by a green eco-friendly mixture of glucomannan (GL) and bisquaternary ammonium salt (BQAS). Corros Sci. 2017;125:139–51. doi: 10.1016/j.corsci.2017.06.013
  • [4] Haruna K, Saleh TA. N, N′-Bis-(2-aminoethyl) piperazine functionalized graphene oxide (NAEP-GO) as an effective green corrosion inhibitor for simulated acidizing environment. J Environ Chem Eng. 2021;9(1):104967. doi: 10.1016/j.jece.2020.104967
  • [5] Sanaei Z, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B. Use of Rosa canina fruit extract as a green corrosion inhibitor for mild steel in 1 M HCl solution: A complementary experimental, molecular dynamics and quantum mechanics investigation. J Ind Eng Chem. 2019;69:18–31. doi: 10.1016/j.jiec.2018.09.013
  • [6] Murmu M, Saha SK, Murmu NC, Banerjee P. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: An experimental, density functional theory and molecular dynamics simulation study. Corros Sci. 2019;146:134–51. doi: 10.1016/j.corsci.2018.10.002
  • [7] Tian H, Li W, Liu A, Gao X, Han P, Ding R, et al. Controlled delivery of multi-substituted triazole by metal-organic framework for efficient inhibition of mild steel corrosion in neutral chloride solution. Corros Sci. 2018;131:1–16. doi: 10.1016/j.corsci.2017.11.010
  • [8] Deberry D, Peyton G, Clark W. Evaluation of corrosion inhibitors in SO2 scrubber solutions. Corros. 1984;40(5):250–6. doi: 10.5006/1.3581950
  • [9] Loto RT. Pitting corrosion evaluation and inhibition of stainless steels: A review. J of Mater and Environ Sci. 2015;6(10):2750–62.
  • [10] Elkadi L, Mernari B, Traisnel M, Bentiss F, Lagrenee M. The inhibition action of 3, 6-bis (2-methoxyphenyl)-1, 2-dihydro-1, 2, 4, 5-tetrazine on the corrosion of mild steel in acidic media. Corros Sci. 2000;42(4):703–19. doi: 10.1016/S0010-938X(99)00101-8
  • [11] Santos-Ortiz R, Rojhirunsakool T, Jha JK, Al Khateeb S, Banerjee R, Jones KS, Shepherd ND. Analysis of the structural evolution of the SEI layer in FeF2 thin-film lithium-ion batteries upon cycling using HRTEM and EELS. Solid State Ion. 2017;303:103–12. doi: 10.1016/j.ssi.2017.02.009
  • [12] Muñoz AI, Antón JG, Guiñón JL, Herranz VP. Comparison of inorganic inhibitors of copper, nickel and copper–nickels in aqueous lithium bromide solution. Electrochim Acta. 2004;50(4):957–66. doi: 10.1016/j.electacta.2004.07.048
  • [13] Ait Albrimi Y, Ait Addi A, Douch J, Souto RM, Hamdani M. Inhibition of the pitting corrosion of 304 stainless steel in 0.5M hydrochloric acid solution by heptamolybdate ions. Corros Sci. 2015;90:522–8. doi: 10.1016/j.corsci.2014.10.023
  • [14] Bolzoni F, Brenna A, Ormellese M. Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete. Cem Concr Res. 2022;154:106719. doi: 10.1016/j.cemconres.2022.10 6719
  • [15] Al Khateeb S, Button TW, Abell JS. Spray pyrolysis of MgO templates on Hastelloy C276 and 310-austenitic stainless steel substrates for YBa2Cu3O7 (YBCO) deposition by pulsed laser deposition. Superdond Sci Technol. 2010;23(9):095001. doi: 10.1088/09532048/23/9/095001
  • [16] Schmid G, Huang H. Spectro-electrochemical studies of the inhibition effect of 4, 7-diphenyl-1, 10-phenanthroline on the corrosion of 304 stainless steel. Corros Sci. 1980;20(8–9):1041–57. doi: 10.1016/0010-938X(80)90083-9
  • [17] Garz I, Glaser B. Untersuchungen Zur Inhibition Der Lochfraßkorrosion Von Nickel Und Stahl Mit Benzyl-n-propylsulfid. Corros Sci. 1974;14(6):353–68. doi: 10. 1016/S0010-938X(74)80029-6
  • [18] Hu K, Zhuang J, Ding J, Ma Z, Wang F, Zeng X. Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corros Sci. 2017;125:68–76. doi: 10.1016/j.corsci.2017.06.004
  • [19] Dong Y, Song G-L, Zheng D. Naturally effective inhibition of microbial corrosion by bacterium-alga symbiosis on 304 stainless steel. J Clean Product. 2022;356:131823. doi: 10.1016/j.jclepro.2022.131823
  • [20] Shoair A, Shanab MM, Mahmoud M, Zaki Z, Abdel-Ghafar H, Motawea M. Investigation on effects of avocado extract as eco-friendly inhibitor for 201 stainless steel corrosion in acidic environment. Int J Electrochem Sci. 2022;17(6):220642. doi: 10.20964/2022.06.31
  • [21] Rani BEA, Basu BBJ. Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corros. 2012;2012:380217. doi: 10.1155/2012/380217
  • [22] Markhali B, Naderi R, Mahdavian M, Sayebani M, Arman S. Electrochemical impedance spectroscopy and electrochemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media. Corros Sci. 2013;75:269–79. doi: 10.1016/j.corsci.2013.06.010
  • [23] Shabani-Nooshabadi M, Ghandchi MS. Santolina chamaecyparissus extract as a natural source inhibitor for 304 stainless steel corrosion in 3.5% NaCl. J Ind Eng Chem. 2015;31:231–7. doi: 10.1016/j.jiec.2015.06.028
  • [24] Al-Khateeb S, Pavlopoulos D, Button TW, Abell JS. Spray pyrolysis of MgO templates on 321-austenitic stainless steel substrates for YBa2Cu3O7 deposition by PLD. J Supercond Nov Magn. 2013;26(2):273–80. doi: 10.1007/s10948-012-1740-9
  • [25] Cao S, Liu D, Ding H, Wang J, Lu H, Gui J. Taskspecific ionic liquids as corrosion inhibitors on carbon steel in 0.5 M HCl solution: an experimental and theoretical study. Corros Sci. 2019;153:301–13. doi: 10.1016/j.corsci.2019.03.035
  • [26] Qiang Y, Zhang S, Yan S, Zou X, Chen S. Three indazole derivatives as corrosion inhibitors of copper in a neutral chloride solution. Corros Sci. 2017;126:295–304. doi: 10.1016/j.corsci.2017.07.012
  • [27] Kovaèević N, Milošev I, Kokalj A. How relevant is the adsorption bonding of imidazoles and triazoles for their corrosion inhibition of copper? Corros Sci. 2017;124:25–34. doi: 10.1016/j.corsci.2017.04.021
  • [28] Zhang D, Tang Y, Qi S, Dong D, Cang H, Lu G. The inhibition performance of long-chain alkylsubstituted benzimidazole derivatives for corrosion of mild steel in HCl. Corros Sci. 2016;102:517–22. doi: 10.1016/j.corsci.2015.10.002
  • [29] Kowsari E, Arman S, Shahini M, Zandi H, Ehsani A, Naderi R, et al. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution. Corros Sci. 2016;112:73–85. doi: 10.1016/j.corsci.2016.07.015
  • [30] Ma L, Lu W, Yang D, Shen J, Gao Z, Zhang S, Liao Q. Dithiocarbamate modified glucose as a novel ecofriendly corrosion inhibitor for copper in sodium chloride media. Sustain Chem and Pharm. 2021;22:100488. doi: 10.1016/j.scp.2021.100488
  • [31] Eftekhari S, Shooshtari Gugtapeh H, Rezaei M. Effect of meat extract as an eco-friendly inhibitor on corrosion behavior of mild steel: Electrochemical noise analysis based on shot noise and stochastic theory. Constr Build Mater. 2021;292:123423. doi: 10.1016/j.conbuildmat.2021.123423
  • [32] Johnson S, DeCarlo A, Satyal P, Dosoky NS, Sorensen A, Setzer WN. Organic certification is not enough: the case of the methoxydecane frankincense. Plants. 2019;8(4):88. doi: 10.3390/plants8040088
  • [33] JS P, Marapur S, Kadam D, Kamalapur M. Pharmaceutical and medicinal applications of Olibanum gum and its constituents: a review. J Pharm Res. 2010;3(3):587–9.
  • [34] Moussaieff A, Shein NA, Tsenter J, Grigoriadis S, Simeonidou C, Alexandrovich AG, et al. Incensole acetate: a novel neuroprotective agent isolated from Boswellia carterii. J Cereb Blood Flow Metab. 2008;28(7).
  • [35] Hoernlein R, Orlikowsky T, Zehrer C, Niethammer D, Sailer E, Simmet T, et al. Acetyl-11-keto-β-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I. J Pharmacol Exp Ther. 1999;288(2):613–9.
  • [36] Moussaieff A, Rimmerman N, Bregman T, Straiker A, Felder CC, Shoham S, et al. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. The FASEB J. 2008;22(8):3024–34. doi: 10.1096/fj.07-101865
  • [37] Kavitha C, Geetha Malini PS, Charan Kantumuchu V, Manoj Kumar N, Verma A, Boopathi S. An experimental study on the hardness and wear rate of carbonitride coated stainless steel. Materials Today: Proceedings. 2023;74:595–601. doi: 10.1016/j.matpr.2022.09.524
  • [38] Guobjoernsdottir B, Einarsson H, Thorkelsson G. Microbial adhesion to processing lines for fish fillets and cooked shrimp: influence of stainless steel surface finish and presence of gram-negative bacteria on the attachment of Listeria monocytogenes. Food Technol and Biotechnol. 2005;43(1):55–61.
  • [39] Cao Q, Pojtanabuntoeng T, Esmaily M, Thomas S, Brameld M, Amer A, Birbilis N. A review of corrosion under insulation: a critical issue in the oil and gas industry. Metals [Internet]. 2022;12(4).
  • [40] Al Khateeb S, Sparks TD. Pore-graded and conductor- and binder-free FeS2 films deposited by spray pyrolysis for high-performance lithium-ion batteries. J Mater Res. 2019;34(14):2456–71. doi: 10.1557/jmr.2019.208
  • [41] Al Khateeb S, Pavlopoulos D, Button TW, Abell JS. Pulsed laser deposition of YBa2Cu3O7 superconducting film on MgO templates spray pyrolyzed on Hastelloy C276. J Supercond Nov Magn. 2012;25(6):1823–7. doi: 10.1007/s10948-012-1560-y
  • [42] Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions. Corros Sci. 2007;49(3):1394–407. doi: 10.1016/j.corsci.2006.08.016
  • [43] Pal S, Bhadauria SS, Kumar P. Pitting corrosion behavior of F304 stainless steel under the exposure of ferric chloride solution. J of Bio- and Tribo-Corros. 2019;5(4):91. doi: 10.1007/s40735-019-0283-z
  • [44] Ehsani A, Mahjani M, Hosseini M, Safari R, Moshrefi R, Shiri HM. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. J Colloid Interface Sci. 2017;490:444–51. doi: 10.1016/j.jcis.2016.11.048
  • [45] Obot IB, Onyeachu IB, Zeino A, Umoren SA. Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research. J Adhes Sci Technol. 2019;33(13):1453–96. doi: 10.1080/01694243.2019.1587224
  • [46] Klapper HS, Goellner J, Burkert A, Heyn A. Environmental factors affecting pitting corrosion of type 304 stainless steel investigated by electrochemical noise measurements under potentiostatic control. Corros Sci. 2013;75:239–47. doi: 10.1016/j.corsci.2013.06.005
  • [47] Thomas J. The mechanism of corrosion prevention by inhibitors. Corros: Elsevier; 1994. p. 17.
  • [48] Uhlig H, Gilman J. Pitting of 18-8 stainless steel in ferric chloride inhibited by nitrates. Corros. 1964;20(9):289t–92t. doi: 10.5006/0010-9312-20.9.289t
  • [49] Albrimi YA, Addi AA, Douch J, Souto R, Hamdani M. Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions. Corros Sci. 2015;90:522–8.
  • [50] Kannan P, Rao TS, Rajendran N. Anti-corrosion behavior of benzimidazoliumtetrafluroborate ionic liquid in acid medium using electrochemical noise technique. J Mol Liq. 2016;222:586–95. doi: 10.1016/j.molliq. 2016.07.116
  • [51] Chen Y, Yang Z, Liu Y, Zhang H, Yin J, Xie Y, Zhang Z. In-situ monitoring the inhibition effect of benzotriazole on copper corrosion by electrochemical noise technique. J Taiwan Inst Chem Eng. 2017;80:908–14. doi: 10.1016/j.jtice.2017.07.037
  • [52] Yang L, Chiang K. On-line and real-time corrosion monitoring techniques of metals and alloys in nuclear power plants and laboratories. Underst and Mitigating Ageing in Nucl Power Plants: Elsevier; 2010. p. 417.
  • [53] Oguzie EE, Adindu CB, Enenebeaku CK, Ogukwe CE, Chidiebere MA, Oguzie KL. Natural products for materials protection: mechanism of corrosion inhibition of mild steel by acid extracts of Piper guineense. The J of Phys Chem C. 2012;116(25):13603–15. doi: 10.1021/jp300791s
  • [54] Tan Y-J, Bailey S, Kinsella B. Studying the formation process of chromate conversion coatings on aluminium using continuous electrochemical noise resistance measurements. Corros Sci. 2002;44(6):1277–86. doi: 10.1016/S0010-938X(01)00131-7
  • [55] Bertocci U, Huet F, Nogueira RP, Rousseau P. Drift removal procedures in the analysis of electrochemical noise. Corros. 2002;58(4):337–47. doi: 10.5006/1.3287684
  • [56] Liu X, Zhang T, Shao Y, Meng G, Wang F. In-situ study of the formation process of stannate conversion coatings on AZ91D magnesium alloy using electrochemical noise. Corros Sci. 2010;52(3):892–900. doi: 10.1016/j.corsci.2009.11.009
  • [57] Hoseinieh S, Homborg A, Shahrabi T, Mol J, Ramezanzadeh B. A novel approach for the evaluation of under deposit corrosion in marine environments using combined analysis by electrochemical impedance spectroscopy and electrochemical noise. Electrochem Acta. 2016;217:226–41. doi: 10.1016/j.electacta.2016.08.146
  • [58] Pujar MG, Anita T, Shaikh H, Dayal RK, Khatak HS. Use of electrochemical noise (EN) technique to study the effect of sulfate and chloride ions on passivation and pitting corrosion behavior of 316 stainless steel. J Mater Eng Perform. 2007;16(4):494–9. doi: 10.1007/s11665-007-9078-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77f55c5b-3fd6-4b14-af82-7ccd2ce39f1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.