Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article briefly describes the problem of air pollution caused by sea-going ships and the resulting restrictions on the emission of toxic and harmful chemical compounds in the exhaust of marine engines, introduced by the International Maritime Organization (IMO) under the International Convention for the Prevention of Sea Pollution from Ships (MARPOL 73/78). Such emissions provide a significant metrological problem, not only for the owners of operating seagoing ships, but also for shipyards, maritime administration offices and environmental protection inspectors. For this reason, the article’s author is developing research issues related to the diagnosing the exhaust emissions of marine engines under operating conditions, i.e. with limited control (measurement) susceptibility. This is particularly important in the period of intensive implementation of a new category of marine fuel, so-called modified fuels with low sulphur content. As part of the problem, a computational model of the parameters characterising the exhaust emissions of a marine engine in operation is presented in this article. This model is based on the measurement of the engine’s control parameters, using a standard (stationary) measurement system and a portable diagnostic system, configured for the purpose of this research. Presented here are representative measurements and calculation results (both obtained by the author and provided by the manufacturer) from the chemical exhaust gas emissivity of one of the ship engines operated. These confirm the adequacy of the calculation model developed and the diagnostic effectiveness of the measuring equipment applied. The methodology developed for experimental testing may also be implemented for the operation of other types of marine engines, provided that the basic chemical composition of the fuel supply and the engine load characteristics and hourly fuel consumption are known. Moreover, there is the possibility of indicating the cylinders and measuring the chemical composition of exhaust gases in the high-temperature part of the exhaust duct.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
76--87
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Gdańsk University of Technology Gabriela Narutowicza 11/12, 80-233 Gdańsk Poland
Bibliografia
- 1. M. Janić, Advanced transport systems: Analysis, modelling, and evaluation of performances. 2014.
- 2. J. Janota, ‘Przepływomierze masowe Coriolisa’, Konferencja „Smary i Oleje”, 2020. [‘Coriolis mass flow meters’].
- 3. Z. Korczewski, Endoskopia silników okrętowych. 2008. [Endoscopy of marine engines].
- 4. Z. Korczewski, ‘Contemporary diagnostic methods for ship engines: A report on scientific research activity of the Polish Naval Academy in this field’, Polish Maritime Research. 2008.
- 5. Z. Korczewski, ‘Analysing the potential for application of the phase shift method in endoscopic examination of marine engines’, Polish Maritime Research. 2013.
- 6. Z. Korczewski, ‘Diagnostyka eksploatacyjna okrętowych silników spalinowych – tłokowych i turbinowych’. Wybrane zagadnienia. 2017. [‘Operational diagnostics of marine internal combustion engines – piston and turbine’].
- 7. Z. Korczewski, ‘The method of energy-efficiency investigations of the newly produced marine fuels through an application of the laboratory diesel engine’, New Trends in Production Engineering. Proceedings of the International Conference. 2018.
- 8. Z. Korczewski, ‘Thermal efficiency investigations on the self-ignition test engine fed with marine low sulphur diesel fuels’, Combustion Engines. 2019.
- 9. J. Kowalski, ‘An experimental study of emission and combustion characteristics of marine diesel engine with fuel injector malfunctions’, Polish Maritime Research. 2016.
- 10. J. Merkisz, L. Piaseczny and T. Kniaziewicz, Zagadnienia emisji spalin silników okrętowych. 2016. [Marine engine exhaust emissions].
- 11. S. Neumann, R. Varbanets, O. Kyrylash, V. Maulevych, and O. Yeryganov, ‘Marine diesels working cycle monitoring on the base of IMES GmbH pressure sensors data’, Diagnostyka. 2019.
- 12. F. Pearce, Confessions of an eco sinner. 2008.
- 13. T. Reiner and F. Arnold, ‘Laboratory flow reactor measurements of the reaction SO3 +H2 O+M→H2 SO4 +M: Implications for gaseous H2SO4 and aerosol formation’, Geophysical Research Letters. 1993.
- 14. T. A. Tran, ‘A research on the energy efficiency operational indicator EEOI calculation tool on M/V NSU JUSTICE of VINIC transportation company, Vietnam’, Journal of Ocean Engineering and Science. 2017.
- 15. R. Varbanets, V. Zalozh, A. Shakhov, I. Savelieva, and V. Piterska, ‘Determination of top dead centre location based on the marine diesel engine indicator diagram analysis’, Diagnostyka. 2020.
- 16. R. Varbanets et al., ‘Acoustic method for estimation of marine low-speed engine turbocharger parameters’, Journal of Marine Science and Engineering. 2021.
- 17. J. Wysocki, ‘Analysis of the energy efficiency operational indicator in economic and ecological aspect’, Scientific Journal of Gdynia Maritime University. 2017.
- 18. K. Witkowski, ‘Problematyka zanieczyszczenia atmosfery przez statki wykorzystywane w transporcie morskim’, Autobusy. 2016. [‘Atmospheric pollution by ships used in maritime transport’].
- 19. Z. Yang, Q. Tan and O. Geng. ‘Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulphur diesel fuel’, Polish Maritime Research. 2019.
- 20. Germanischer Lloyd SE, Rules for classification and construction: Additional rules and guidelines. 2013.
- 21. MAN Diesel Shop Test Protocol, Measurement recordings and performance data of the MAN 10L32/44CR type engines. 2009.
- 22. MARPOL 73/78 Convention, annex VI: Regulations for the prevention of air pollution from ships (entered into force on 19 May 2005).
- 23. Resolution MEPC. 231(65) adopted on 17 May 2013, Guidelines for calculation of reference lines for use with the Energy Efficiency Design Index (EEDI).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77ed717d-8a9e-4b9c-ac76-46ea3656260d