Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Space information, or information obtained by means of space remote sensing, is widely and effectively used by many countries to solve a lot of scientific, technical and applied problems. Most manufacturers of space remote sensing systems declared the high resolution values of their systems. However, these values are computed theoretically, without considering the various factors affected them. To determine the real resolution of the system, we have considered mathematical modeling which describes the influence of different factors on the satellite images resolution. Some of these factors are: atmosphere turbulence, image shift, residual defocusing, and diffraction. One of the most important characteristic of the images resolution is the modulation transfer function (MTF) which allows the estimation of different factors affected on the image resolution. The modulation transfer function (MTF) is a fundamental tool for assessing the performance of imaging systems. Various authors [Zhang et al. 2012, Hwang et al. 2008, Ryan et al. 2003] investigate diferent MTF assessment methods of high resolution satellite images: a slant-edge method, a knife-edge method, a sine wave method and a grill pattern. We propose a generalized approach for MTF assessment based on theoretical assumptions which allows to determine the inluence of diferent factors. A comparative analysis of the modulation transfer function(s) for different space imaging systems shows that the image resolution depends mainly on the atmosphere turbulence and size of a sensor element. Additionally, we established that atmospheric turbulence significantly reduces the transmitting possibility of images. The parameters which describe the influence of turbu¬lence required additional studies. The main goal of our researches is to show that real spatial image(s) resolution is much "inferior" than the value provided by the manufacturers of space remote sensing systems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
27--35
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
- Lviv National Polytechnic University Department of Photogrammetry and Geoinformatics
autor
- Lviv National Polytechnic University Department of Photogrammetry and Geoinformatics
Bibliografia
- Hwang H., Choi Y.-W., Kwak S., Kim M., Park W.-K. 2008. MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method. Proc. SPIE7109, Image and Signal Processing for Remote Sensing XIV, 710905, 1 October.
- Ryan R., Baldridge B., Schowengerdt R.A., Choi T., Helder D.L., Blonski S. 2003. IKONOS spatial resolution and image interpretability characterization. Remote Sensing of Environment, 88, 37-52.
- Zhang X., Kashti T., Kella D., Frank T., Shaked D., Ulichney R., Fischer M., Allebach J.P.
- 2012. Measuring the Modulation Transfer Function of Image Capture Devices: What Do the Numbers Really Mean? Image Quality and System Performance IX, SPIE, Vol. 8293, 829307.
- Бурштинська Х., Долинська І. 2010. Дослідження впливу основних чинників на розрізненість космічних знімальних систем. Геодезія, картографія і аерофотознімання, Видавництво Львівської політехніки, Львів, 73, 87–91.
- Бурштинська Х.В., Станкевич С.А. 2010. Аерокосмічні знімальні системи: навчальний посібник, Видавництво Львівської політехніки, Львів, 292.
- Живичин А.Н., Соколов В.С. 1980. Дешифрование фотограмметрических изображений, М.: Недра, 254. Кашкин В.Б., Сухинин А.И. 2001. Дистанционное зондирование Земли из космоса. Цифровая обработка изображений: Учебное пособие, М.: Логос, 264.
- Кучко А.С., 1988. Аэрофотография и специальные фотографические исследования, М.: Недра, 236.
- Савиных В.П., Кучко А.С., Стеценко А.Ф. 1997. Аэрокосмическая фотосьемка: учебник, М.: «Картогеоцентр» – «Геодезиздат», 378.
- Фризер Х. 1978. Фотографическая регистрация информации: монографія, М.: Мир, 670.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77ec76bf-4b8f-45f4-9aa0-1889133f8cd5