PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasound imaging of stiffness with two frequency pulses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays there are new modalities in ultrasound imaging allowing better characterization of tissue regions with different stiffness. We are proposing a novel approach based on compression and rarefaction of tissue simultaneously with imaging. The propagating wave is a combination of two pulses. A low frequency pulse is expected to change the local scattering properties of the tissue due to compression/rarefaction while a high frequency pulse is used for imaging. Two transmissions are performed for each scanning line. First, with the imaging pulse that propagates on maximum compression caused by a low frequency wave. Next, the low frequency wave is inverted and the imaging pulse propagates over the maximum rarefaction. After the processing of the subtracted echoes from subsequent transmissions including wavelet transform and band-pass filtering, differential images were reconstructed. The low frequency wave has a visible impact on the scattering properties of the tissue which can be observed on a differential image.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
151--160
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw, Poland
Bibliografia
  • [1] P.N.T. Wells, H.D. Liang, Medical ultrasound: imaging of soft tissue strain and elasticity, Journal of the Royal Society Interface, Vol. 64, 1521-49, 2011.
  • [2] M.A. Averkiou, D.R. Roundhill, J.E. Powers, A new imaging technique based on the nonlinear properties of tissues, Proc. IEEE Ultrason. Symp., Vol. 2, 1561-1566, 1997.
  • [3] H. Becher, K. Tiemann, C. Pohl, N.C. Nanda, M. A. Averkiou, J. E. Powers, B. Luderitz, Improvement in endocardial border delineation using tissue harmonic imaging, Echocardiography, Vol. 15, 511-517, 1998.
  • [4] F. Tranquart, N. Grenier, V. Eder, L. Pourcelot, Clinical use of ultrasound tissue harmonic imaging, Ultrasound Med. Biol., Vol. 25, No. 6, 889–894, 1999.
  • [5] M.A. Averkiou, Tissue Harmonic ultrasonic imaging, C. R. Acad. Sci., t. 2, Série IV, (Applied physics, Biophysics), 1139–1151, 2001.
  • [6] T. Christopher, Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging, IEEE Trans. Ultrason. Ferr. Freq. Control, Vol. 44, No. 1, 125-139, 1997.
  • [7] T. Christopher, Experimental investigation of finite amplitude distortion-based second harmonic pulse echo ultrasonic imaging, IEEE Trans. Ultrason. Ferr. Freq. Control, Vol. 45, No. 1, 158-162, 1998.
  • [8] H. D. Simpson, C.T. Chin, P. N. Burns, Pulse inversion doppler: A new method for detecting nonlinear echoes from microbubble contrast agents, IEEE Trans. Ultrason. Ferr. Freq. Control, Vol. 46, 372-382, 1999.
  • [9] A. Nowicki, J. Wójcik, W. Secomski, Harmonic imaging using Multitone Nonlinear Coding, Ultrasound Med. Biol.,Vol.33, No.7, 1112-1122, 2007.
  • [10] W. L. Nyborg, Acoustic streaming due to attenuating plane waves, J. Acoust. Soc., vol. 25, 68-75, 1953.
  • [11] W. L. Nyborg, Acoustic streaming, In Mason, W.P., ed., Physical acoustics, IIB, 265- 331, 1965.
  • [12] T. F. Heuter, R. H. Bolt, Sonics, John Wiley and Sons, New York, 1955.
  • [13] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, S. Y. Emelianov, Shear wave elasticity imaging: a new ultrasonic technology in medical diagnosis. Ultrasound Med. Biol., Vol. 24, 1419-1435, 1998.
  • [14] J. Bercoff, M. Tanter, M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferr. Freq. Control, Vol. 51, 396- 409, 2004.
  • [15] J. Bercoff, M. Tanter, M. Muller, M. Fink, The role of viscosity in the impulse diffraction field of elastic waves induced by acoustic radiation force. IEEE Trans. Ultrason. Ferr. Freq. Control, Vol. 51, 1523-1536, 2004.
  • [16] S. Tjotta, On some non-linear effects in sound fields, with special emphasis on the generation of vorticity and the formation of streaming patterns, Arch. Math. Naturvidensk., Vol. 55, 1-68, 1959.
  • [17] S. Mallat, Wavelet tour of signal processing, Elsevier Science, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77ec2726-480c-42e3-b6d9-6f998d2ea81f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.