PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design linear array antenna for cellular system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Projekt anteny liniowej dla systemu komórkowego
Języki publikacji
EN
Abstrakty
EN
In this study, a linear array of antenna arrays, including beam scanning, lateral global connections, element designs, and bars, was developed using an antenna toolbox, guidance, and analysis on a 9-cell linear array of half-way wavelength dipoles. It aims to display a linear array model at the angle and central element patterns at the design frequency for 3D and 2D elements. For this study, the resonant dipole will be allocated to a single linear array radiator by selecting a frequency of 1,8 GHz for the design. Disposition at the resonance frequency of isolated dipole tuning. To provide the other parts with a reference impedance for the patterns, every component spirals independently. The effect of the phenomenon should not be determined by the excitement of others but should also be supported by the development of currents for each item in the array. The standardized central element pattern was monitored using standardized 9-dipole linear width management.
PL
W tym badaniu opracowano liniowy układ układów anten, w tym skanowanie wiązki, boczne połączenia globalne, projekty elementów i pręty, przy użyciu zestawu narzędzi antenowych, wskazówek i analizy na 9-komorowym układzie liniowym dipoli o połowie długości fali. Ma na celu wyświetlenie liniowego modelu szyku pod kątem i wzorców elementów centralnych z częstotliwością projektową dla elementów 3D i 2D. W tym badaniu dipol rezonansowy zostanie przydzielony do pojedynczego promiennika liniowego, wybierając częstotliwość 1,8 GHz do projektu. Dyspozycja przy częstotliwości rezonansowej izolowanego strojenia dipolowego. Aby zapewnić pozostałym częściom impedancję odniesienia dla wzorów, każdy element kręci się spiralnie niezależnie. Efekt zjawiska nie powinien być determinowany przez podniecenie innych, ale powinien być również wspierany przez rozwój prądów dla każdego elementu w szyku. Standaryzowany wzór elementu centralnego monitorowano przy użyciu znormalizowanego 9-dipolowego zarządzania szerokością liniową.
Rocznik
Strony
94--97
Opis fizyczny
Bibliogr. 25 poz., rys.
Bibliografia
  • [1] C. A. Fowler, “Old radar types never die; they just phased array or... 55 years of trying to avoid mechanical scan,” IEEE Aerosp. Electron. Syst. Mag., vol. 13, no. 9, pp. 24A-24L, 1998.
  • [2] D. K. Cheng, “Optimization techniques for antenna arrays,” Proc. IEEE, vol. 59, no. 12, pp. 1664–1674, 1971.
  • [3] R. C. Hansen, “Fundamental limitations in antennas,” Proc. IEEE, vol. 69, no. 2, pp. 170–182, 1981.
  • [4] Y.-L. Ban, Y.-F. Qiang, Z. Chen, K. Kang, and J.-H. Guo, “A dual-loop antenna design for hepta-band WWAN/LTE metal-rimmed smartphone applications,” IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 48–58, 2014.
  • [5] J. Anguera, A. Andújar, M.-C. Huynh, C. Orlenius, C. Picher, and C. Puente, “Advances in antenna technology for wireless handheld devices,” Int. J. Antennas Propag., vol. 2013, 2013.
  • [6] T. Ali, A. W. M. Saadh, R. C. Biradar, J. Anguera, and A. Andújar, “A miniaturized metamaterial slot antenna for wireless applications,” AEU-International J. Electron. Commun., vol. 82, pp. 368–382, 2017.
  • [7] S. Ghosh and D. Sen, “An inclusive survey on array antenna design for millimeter-wave communications,” IEEE Access, vol. 7, pp. 83137–83161, 2019.
  • [8] A. A. Qasim and A. H. Sallomi, “Design and Analysis of Phased Array System by MATLAB Toolbox,” Al-Kitab J. Pure Sci., vol. 4, no. 1, 2020.
  • [9] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,” IEEE Trans. Device Mater. Reliab., vol. 5, no. 3, pp. 305–316, 2005.
  • [10] M. A. S. Natera et al., “New antenna array architectures for satellite communications,” in Advances in Satellite Communications, IntechOpen, 2011.
  • [11] T.-Y. Kim and S.-S. Hwang, “Performance Analysis of Beamforming Satellite System Applying Circular Array Antenna,” J. Korea Inst. Electron. Commun. Sci., vol. 14, no. 5, pp. 845–852, 2019.
  • [12] A. Vesa, F. Alexa, and H. Baltă, “Comparisons between 2D and 3D uniform array antennas,” in 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), 2015, pp. 1285–1290.
  • [13] O. Quevedo-Teruel et al., “Roadmap on metasurfaces,” J. Opt., vol. 21, no. 7, p. 73002, 2019.
  • [14] O. Tsilipakos et al., “Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software defined metasurfaces with an embedded network of controllers,” Adv. Opt. Mater., vol. 8, no. 17, p. 2000783, 2020.
  • [15] P. Ioannides and C. A. Balanis, “Uniform circular arrays for smart antennas,” IEEE Antennas Propag. Mag., vol. 47, no. 4, pp. 192–206, 2005.
  • [16] B. Liao, Z.-G. Zhang, and S.-C. Chan, “DOA estimation and tracking of ULAs with mutual coupling,” IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1, pp. 891–905, 2012.
  • [17] L. D. Girod, A self-calibrating system of distributed acoustic arrays. University of California, Los Angeles, 2005.
  • [18] A. Pal, A. Mehta, D. Mirshekar-Syahkal, and H. Nakano, “$2\times2 $ Phased Array Consisting of Square Loop Antennas for High Gain Wide Angle Scanning with Low Grating Lobes,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 576–583, 2016.
  • [19] Y. F. Cao and X. Y. Zhang, “A wideband beam-steerable slot antenna using artificial magnetic conductors with simple structure,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1685–1694, 2018.
  • [20] V. Mathur and M. Gupta, “Comparison of performance characteristics of rectangular, square and hexagonal microstrip patch antennas,” in Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization, 2014, pp. 1–6.
  • [21] R. Najeeb, D. Hassan, D. Najeeb, and H. Ademgil, “Design and simulation of microstrip patch antenna array for X-Band applications,” in 2016 HONET-ICT, 2016, pp. 79–83.
  • [22] N. P. Le and F. Safaei, “Antenna selection strategies for MIMOOFDM wireless systems: An energy efficiency perspective,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2048–2062, 2015.
  • [23] L. Li et al., “mmWave communications for 5G: implementation challenges and advances,” Sci. China Inf. Sci., vol. 61, no. 2, p. 21301, 2018.
  • [24] S. A. Shaikh and A. M. Tonello, “Radio source localization in multipath channels using EM lens assisted massive antennas arrays,” IEEE Access, vol. 7, pp. 9001–9012, 2019.
  • [25] D. Vatamanu and S. Miclăuş, “UHF Fractal Antennas: Solutions for Radio Links Using Matlab Simulations,” in International Conference Knowledge-Based Organization, 2020, vol. 26, no. 3, pp. 179–184.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77eb504b-db7c-43bd-97e9-49f93fdc966e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.