Identyfikatory
Warianty tytułu
Principles and possible applications of calcium carbonate biomineralization
Języki publikacji
Abstrakty
Węglan wapnia CaCO3 jest substancją szeroko rozpowszechnioną w przyrodzie i znajduje liczne zastosowania praktyczne. W przyrodzie jego biomineralizacja jest między innymi wynikiem procesów strącania indukowanych mikrobiologicznie. Jednym z nich jest strącanie indukowane przez bakterie ureolityczne. Proces ten, jeśli prowadzony biomimetycznie, zachodzi w łagodnych warunkach i co ważne, może być zastosowany w warunkach polowych in situ. W ten sposób stanowi on ekoprzyjazną i energooszczędną technikę do wykorzystania jako ekologiczna alternatywa dla obecnie stosowanych technik w wielorakich obszarach inżynieryjnych. W obszarach tych wytrącany CaCO3 spełnia rolę czynnika remediacyjnego i cementującego, na przykład w celu (1) oczyszczania wód z jonów metali toksycznych i radionuklidów, (2) wzmacniania i konsolidacji gruntu i piasku, (3) uszczelniania formacji geologicznych, (4) naprawy obiektów budowlanych i (5) ochrony powierzchni tych obiektów warstwami ochronnymi. Choć stosowana z powodzeniem w sektorze ochrony i restauracji budowli historycznych, technika ta pozostaje ciągle na etapie badań i procesów optymalizacyjnych. By stać się w pełni niezawodną i ekonomiczną techniką wymaga ona dalszych badań, których zadaniem jest rozwiązanie ograniczeń i parametryczna optymalizacja, oraz testy w pełnowymiarowych eksperymentach polowych. Jest to zadanie interdyscyplinarne dla inżynierów budownictwa, geologów, chemików, mikrobiologów i konserwatorów zabytków, którego efektem będzie wprowadzenie tej ekoprzyjaznej i innowacyjnej techniki na rynek inżynierski do wykorzystania w inżynierii środowiska i lądowej, geotechnice i konserwacji zabytków. W kontekście ekopotencjału i innowacyjności tej techniki, w niniejszym artykule przedstawiono jej podstawy, obszary jej zastosowań oraz zalety i ograniczenia.
Calcium carbonate (CaCO3) is a substance widespread in nature and used in numerous practical applications. In nature, its biomineralization relies, among others, on microbiologically induced precipitation processes. One of such processes is precipitation induced by ureolytic bacteria. If performed in a biomimetic manner, the process is carried out under mild conditions and, most importantly, can be employed in field applications in situ. Therefore, the process constitutes an eco-friendly and energy-saving technique to be used as an ecological alternative to conventional techniques in a variety of engineering fields. In these fields, CaCO3 serves as a remediating and cementing agent, for instance to (1) clean waste- and groundwater from toxic metals and radionuclides, (2) strengthen and consolidate soil and sand, (3) seal geological formations to enhance oil recovery and geologic CO2 sequestration, (4) repair stone and concrete structures, and (5) cover surfaces of these structures with protective layers. Although already in use in the sector of protection and renovation of stone monuments, to date the technique has remained mostly under research and optimization. To become fully implementable as a reliable and economically viable technique, it still requires further research in order to address its limitations, focus on parametrical optimization, up-scaling and life-size field experiments. All these, in an interdisciplinary effort of geologists, microbiologists, chemists, civil engineers and conservators of historic monuments, will move this eco-friendly and innovative branch of engineering from laboratory to field applications in the environmental and civil engineering, geotechnology and conservation of historic buildings. Given its eco-potential and innovativeness, in this study the principles of the technique, advantages, possible applications and challenges are reviewed.
Czasopismo
Rocznik
Tom
Strony
31--37
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
autor
autor
Bibliografia
- 1. T. ZHU, M. DITTRICH: Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology 2016, Vol. 4, Art. 4.
- 2. S. P. CHAPARRO-ACUÑA, M. L. BECERRA-JIMÉNEZ, J. J. MARTÍNEZ-ZAMBRANO, H. A. ROJAS-SARMIENTO: Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process. Acta Agronomica 2018, Vol. 67, pp. 277–288.
- 3. N. K. DHAMI, M. S. REDDY, A. MUKHERJEE: Biomineralization of calcium carbonates and their engineered applications. Frontiers in Microbiology 2013, Vol. 4, Art. 314.
- 4. A. J. PHILLIPS, R. GERLACH, E. LAUCHNOR, A. C. MITCHELL, A. B. CUNNINGHAM, L. SPANGLER: Engineered applications of ureolytic biomineralization: A review. Biofouling 2013, Vol. 29, pp. 715–733.
- 5. D. MUJAH, M. A. SHAHIN, L. CHENG: State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal 2017, Vol. 34, pp. 524–537.
- 6. P. ANBU, C.-H. KANG, Y.-J. SHIN, S.-S. SO: Formation of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus 2016, Vol. 5, Art. 250.
- 7. W. de MUYNCK, N. de BELIE, W. VERSTRAETE: Microbial carbonate precipitation in construction materials: A review. Ecological Engineering 2010, Vol. 36, pp. 118–136.
- 8. D. KUMARI, X.-Y. QIAN, X. PAN, V. ACHAL, Q. LI, G. M. GADD: Microbially-induced carbonate precipitation for immobilization of toxic metals. Advances in Applied Microbiology 2016, Vol. 94, pp. 79–108.
- 9. D. ARIAS, L. A. CISTERNAS, M. RIVAS: Biomineralization mediated by ureolytic bacteria applied to water treatment: A review. Crystals 2017, Vol. 7, Art. 345.
- 10. V. IVANOV, J. CHU: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology 2008, Vol. 7, pp. 139–153.
- 11. R. A. N. DILRUKSHI, S. KAWASAKI: Effective use of plantderived urease in the field of geoenvironmental/geotechnical engineering. Journal of Civil & Environmental Engineering 2016, Vol. 6, Art. 207.
- 12. F. HAMMES, W. VERSTRAETE: Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Bio/Technology 2002, Vol. 1, pp. 3–7.
- 13. L. MAZZEI, F. MUSIANI, S. CIURLI: Urease. RSC Metallobiology 2017, Vol. 10, pp. 60–97.
- 14. B. KRAJEWSKA: Ureases. I. Functional, kinetic and catalytic properties: A review. Journal of Molecular Catalysis B: Enzymatic 2009, Vol. 59, pp. 9–21.
- 15. S. BENINI, W. R. RYPNIEWSKI, K. S. WILSON, S. MILETTI, S. CIURLI, S. MANGANI: A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: Why urea hydrolysis costs two nickels. Structure 1999, Vol. 7, pp. 205–216.
- 16. B. KRAJEWSKA, R. van ELDIK, M. BRINDELL: Temperature-and pressure-dependent stopped-fl ow kinetic studies of jack-bean urease. Implications for the catalytic mechanism. Journal of Biological Inorganic Chemistry 2012, Vol. 17, pp. 1123–1134.
- 17. B. KRAJEWSKA: A combined temperature-pH study of urease kinetics. Assigning pKa values to ionizable groups of the active site involved in the catalytic reaction. Journal of Molecular Catalysis B: Enzymatic 2016, Vol. 124, pp. 70–76.
- 18. L. V. MODOLO, C. J. DA-SILVA, D. S. BRANDÃO, I. S. CHAVES: A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. Journal of Advanced Research 2018, Vol. 13, pp. 29–37.
- 19. P. KAFARSKI, M. TALMA: Recent advances in design of new urease inhibitors: A review. Journal of Advanced Research 2018, Vol. 13, pp. 101–112.
- 20. M. J. TODD, R. P. HAUSINGER: Competitive inhibitors of Klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site. Journal of Biological Chemistry 1989, Vol. 264, pp. 15835–15842.
- 21. B. KRAJEWSKA, M. BRINDELL: Thermodynamic study of competitive inhibitors’ binding to urease. Journal of Thermal Analysis and Calorimetry 2016, Vol. 123, pp. 2427–2439.
- 22. B. KRAJEWSKA, W. ZABORSKA, M. LESZKO: Inhibition of chitosan-immobilized urease by slow binding inhibitors: Ni2+, F– and acetohydroxamic acid. Journal of Molecular Catalysis B: Enzymatic 2001, Vol. 14, pp. 101–109.
- 23. B. KRAJEWSKA: Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme. Journal of Enzyme Inhibition and Medicinal Chemistry 2008, Vol. 23, pp. 535–542.
- 24. B. KRAJEWSKA, W. ZABORSKA: Double mode of inhibition-inducing interactions of 1,4-naphthoquinone with urease. Arylation vs oxidation of enzyme thiols. Bioorganic and Medicinal Chemistry 2007, Vol. 15, pp. 4144–4151.
- 25. L. MAZZEI, M. CIANCI, F. MUSIANI, S. CIURLI: Inactivation of urease by 1,4-benzoquinone: Chemistry at the protein surface. Dalton Transations 2016, Vol. 45, pp. 5455–5459.
- 26. S. BENINI, M. CIANCI, L. MAZZEI, S. CIURLI: Fluoride inhibition of Sporosarcina pasteurii urease: Structure and thermodynamics. Journal of Biological Inorganic Chemistry 2014, Vol. 19, pp. 1243–1261.
- 27. B. KRAJEWSKA: Ureases. II. Properties and their customizing by enzyme immobilizations: A review. Journal of Molecular Catalysis B: Enzymatic 2009, Vol. 59, pp. 22–40.
- 28. B. KRAJEWSKA: Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology 2004, Vol. 35, pp. 126–139.
- 29. B. KRAJEWSKA: Urease immobilized on chitosan membrane. Inactivation by heavy metal ions. Journal of Chemical Technology and Biotechnology 1991, Vol. 52, pp. 157–162.
- 30. W. de MUYNCK, K. VERBEKEN, N. de BELIE, W. VERSTRAETE: Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering 2010, Vol. 36, pp. 99–111.
- 31. S. STOCKS-FISCHER, J. K. GALINAT, S. S. BANG: Microbiological precipitation of CaCO3. Soil Biology and Biochemistry 1999, Vol. 31, pp. 1563–1571.
- 32. G. le MÉTAYER-LEVREL, S. CASTANIER, G. ORIAL, J.-F. LOUBIÈRE, J.-P. PERTHUISOT: Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology 1999, Vol. 126, pp. 25–34.
- 33. V. S. WHIFFIN, L.A. van PAASSEN, M.P. HARKES: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal 2007, Vol. 24, pp. 417–423.
- 34. M.P. HARKES, L. A. van PAASSEN, J. L. BOOSTER, V. S. WHIFFIN, M. C. M. van LOOSDRECHT: Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering 2010, Vol. 36, pp. 112–117.
- 35. L. A. van PAASSEN, R. GHOSE, T. J. M. van der LINDEN, W. R. L van der STAR, M. C. M. van LOOSDRECHT: Quantifying biomediated ground improvement by ureolysis: Largescale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering 2010, Vol. 136, pp. 1721–1728.
- 36. G. D. O. OKWADHA, J. LI: Optimum conditions for microbial carbonate precipitation. Chemosphere 2010, Vol. 81, pp. 1143–1148.
- 37. K. L. BACHMEIER, A. E. WILLIAMS, J. R. WARMINGTON, S.S. BANG: Urease activity in microbiologically-induced calcite precipitation. Journal of Biotechnology 2002, Vol. 93, pp. 171–181.
- 38. Y. FUJITA, F. G. FERRIS, R. D. LAWSON, F. S. COLWELL, R. W. SMITH: Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal 2000, Vol. 17, pp. 305–318.
- 39. F. G. FERRIS, V. PHOENIX, Y. FUJITA, R. SMITH: Kinetics of calcium precipitation induced by ureolytic bacteria at 10 and 20oC in artificial groundwater. Geochimica et Cosmochimica Acta 2003, Vol. 68, pp. 1701–1710.
- 40. A. J. PHILLIPS, E. G. LAUCHNOR, J. ELDRING, R. ESPOSITO, A. C. MITCHELL, R. GERLACH, A. B. CUNNINGHAM, L. H. SPANGLER: Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation. Environmental Science & Technology 2013, Vol. 47, pp. 142–149.
- 41. M. NEMATI, G. VOORDOUW: Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme Microbial Technology 2003, Vol. 33, pp. 635–642.
- 42. M. NEMATI, E. A. GREENE, G. VOORDOUW: Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry 2005, Vol. 40, pp. 925–933.
- 43. D. NEUPANE, H. YASUHARA, N. KINOSHITA, T. UNNO: Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. Journal of Geotechnical and Geoenvironmental Engineering 2013, Vol. 139, pp. 2201–2211.
- 44. I. SONDI, B. SALOPEK-SONDI: Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Langmuir 2005, Vol. 21, pp. 8876–8882.
- 45. I. H. NAM, C. M. CHON, K.-Y. YUNG, S.-G. CHOI, H. CHOI, S.S. PARK: Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials. KSCE Journal of Civil Engineering 2015, Vol. 19, pp. 1620–1625.
- 46. S.-S. PARK, S.-G. CHOI, I.H. NAM: Effect of plant-induced calcite precipitation on the strength of sand. Journal of Materials in Civil Engineering 2014, Vol. 26, pp. 1–5.
- 47. N. HAMDAN, R. KAVAZANJIAN Jr, S. O’DONNELL: Carbonate cementation via plant derived urease. In: P. DELAGE, J. DESRUES, R. FRANK, A. PUECH, F. SCHLOSSER [Eds.]: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Presses des Ponts, Paris (France) 2013, pp. 2489–2492.
- 48. C. M. GOROSPE, S.-H. HAN, S.-G. KIM, J.-Y. PARK, C.-H. KANG, J.-H. JEONG, J.-S. SO: Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering 2013, Vol. 18, pp. 903–908.
- 49. F. HAMMES, N. BOON, J. de VILLIERS, W. VERSTRAETE, S.D. SICILIANO: Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and Environmental Microbiology 2003, Vol. 69, pp. 4901–4909.
- 50. E. WORREL, L. PRICE, N. MARTIN, C. HENDRIKS, L. O. MEIDA: Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment 2001, Vol. 26, pp. 303–329.
- 51. H. SUTHAR, K. HINHURAO, A. DESAI, A. NERURKAR: Selective plugging strategy-based microbial-enhanced oil recovery using Bacillus licheniformis TT33. Journal of Microbiology and Biotechnology 2009, Vol. 19, pp. 1230–1237.
- 52. A. MITCHELL, A. PHILLIPS, J. KASZUBA, W. HOLLIS, A. CUNNINGHAM, R. GERLACH: Microbially enhanced carbonate mineralization and the geologic containment of CO2. Geochimica et Cosmochimica Acta 2008, Vol. 72, p. A636.
- 53. J. DICK, W. de WINDT, B. de GRAEF, H. SAVEYN, P. van der MEEREN, N. de BELIE, W. VERSTRAETE: Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus Species. Biodegradation 2006, Vol. 17, pp. 357–367.
- 54. W. de MUYNCK, D. DEBROUWER, N. de BELIE, W. VERSTRAETE: Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research 2008, Vol. 38, pp. 1005–1014.
- 55. V. ACHAL, A. MUKHERJEE, M.S. REDDY: Effect of calcifying bacteria on permeation properties of concrete structures. Journal of Industrial Microbiology and Biotechnology 2011, Vol. 38, pp. 1229–1234.
- 56. S. JOSHI, S. GOYAL, A. MUKHERJEE, M. S. REDDY: Microbial healing of cracks in concrete: a review. Journal of Industrial Microbiology and Biotechnology 2017, Vol. 44, pp. 1511–1525.
- 57. V. VIKTOR, H. M. JONKERS: Bacteria-based concrete: From concept to market. Smart Materials and Structures 2016, Vol. 25, Art. 084006.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77ea9adb-a1bf-4932-8f48-1e73190a40ae