PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of a Compact 4-shaped Annular Ring Ultra Wideband Antenna Using Characteristic Modes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This communication proposes a compact 4-shaped monopole annular ring UWB antenna design. The proposed structure contains multiple radiating strips inside the annular ring, in the form of a 4-shaped and a 50Ω microstrip feed line. A tapered structure with a feed point is chosen to achieve wideband characteristics. The proposed model is printed on a low-priced FR4 substrate with a size of 0.180𝝀₀ × 0.225𝝀₀ (20 × 25mm²). The proposed model achieves a fractional bandwidth of 133.74% in the 2.7 to 13.6 GHz range with S11<-10dB and covers the 3.1-10.6 GHz unlicensed band approved by FCC in 2002 and X-band applications. The antenna exhibits stable and Omni-directional radiation patterns in the operating frequency range. The analysis of the proposed monopole antenna using characteristic modes is performed to obtain a physical understanding of the radiation process occurring on the radiating antenna. The modal significance curves and the modal current distributions are used to analyze the radiating antenna using the first six characteristic modes. The measurement and simulation results show a good agreement.
Rocznik
Strony
229--235
Opis fizyczny
Bibliogr. 22 poz., tab., wykr., rys.
Twórcy
  • Research Scholar, ECE Department, JNTUA, Anantapur, India
  • ECE Department, PBRVITS, Kavali, India
Bibliografia
  • [1] KL. WONG, “Compact and broadband microstrip antennas,” 1st edition, 2002, Wiley, New York.
  • [2] G. KUMAR, and K. P. RAY, Broadband microstrip antennas, 1st edition, 2003, Artech House, USA
  • [3] FCC Report and Order for Part 15 Acceptance of Ultra Wideband (UWB) Systems from 3.1 –10.6 GHz, FCC, Washington, DC, 2002.
  • [4] R. Cicchetti, E. Miozzi, and O. Testa, “Wideband and UWB antennas for wireless applications: a comprehensive review,” Int. J. Antennas Propag., Vol. 2017, pp. 1-45, 2017. http://dx.doi.org/10.1155/2017/2390808
  • [5] N. Prombutr, P. Kirawanich, and P. Akkaraekthalin, “A bandwidth enhancement of UWB microstrip antenna with a modified ground plane,” Int. J. Microw. Sci. Technol., Vol. 2009, pp. 1-7, 2009. https://doi.org/10.1155/2009/821515
  • [6] T. Ali, B. K. Subhash, S. Pathan, and C. B. Rajashekhar, “A compact decagonal-shaped UWB monopole planar antenna with truncated ground plane,” Microw. Opt. Technol. Lett., Vol. 60, no. 12, pp. 2937–2944, 2018. http://dx.doi.org/10.1002/mop.31448
  • [7] M.A. Matin, “A new design and analysis of microstrip-fed ultra-wideband printed monopole antenna,” Int. J. Commun., Vol. 9, pp. 15–18, 2015.
  • [8] K. P. Ray, and S. S. Thakur, ”Modified trident UWB printed monopole antenna,” Wirel. Person. Commun., Vol. 109, pp.1689–1697, 2019. https://dx.doi.org/10.1007/s11277-019-06646-x
  • [9] A. A. Omar, O. A. Safia, and M. Nedil, “UWB coplanar waveguide-fed coplanar strips rectangular spiral antenna,” Int. J. RF Microw. Comput. Aided Eng., Vol. 27, no. 7, e21115, 2017. http://dx.doi.org/10.1002/mmce.21115
  • [10] Y-J. Ren, and K. Chang, “An annual ring antenna for UWB communications,” IEEE Antennas Wirel. Propag. Lett., Vol. 5, pp. 274–276, 2006. http://dx.doi.org/10.1109/LAWP.2006.875897
  • [11] S. Ayman Al-Zayed and V. A. Shameena, “A novel FGCPW-fed flag-shaped UWB monopole antenna,” Int. J. Microw. Wirel. Technol., Vol. 8, no. 2, pp. 319–326, 2016. http://dx.doi.org/10.1017/S1759078714001627
  • [12] M. J. Hossain, M. R. I. Faruque, and M. T. Islam,” Design of a patch antenna for ultra wide band applications,” Microw. Opt. Technol. Lett., Vol. 58, no. 9, pp. 2152–2156, 2016. http://dx.doi.org/10.1002/mop.29993
  • [13] A. Joshi, and R. Singhal, “Probe‑fed hexagonal ultra wideband antenna using flangeless SMA connector,” Wirel. Personal Commun., Vol. 110, pp. 973–982, 2020. https://doi.org/10.1007/s11277-019-06768-2
  • [14] S. R. Patre, and S. P. Singh,” CPW-fed flower-shaped patch antenna for broadband applications,” Microw. Opt. Technol. Lett., Vol. 57, no. 12, pp. 2908–2913, 2015. http://dx.doi.org/10.1002/mop.29480
  • [15] K. A. Obeidat, B. D. Raines, and R. G. Rojas, “Antenna design and analysis using characteristic modes,” in Proc. IEEE Antennas Propag. Society Int. Symp., 2007, pp. 5993-5996. https://doi.org/10.1109/APS.2007.4396918
  • [16] Z. Miers, H. Li, and B. K. Lau, “Design of bandwidth-enhanced and multiband MIMO antennas using characteristic modes,” IEEE Antennas Wirel. Propag. Lett., 2013, Vol. 12, pp. 1696-1699. http://dx.doi.org/10.1109/LAWP.2013.2292562
  • [17] D. Wen, Y. Hao, H. Wang, and H. Zhou, “Design of a wideband antenna with stable omnidirectional radiation pattern using the theory of characteristic modes,” IEEE Trans. Antennas Propag., Vol. 65, no. 5, pp. 2671-2676, 2017. http://dx.doi.org/10.1109/TAP.2017.2679767
  • [18] A. Kumar, J. K. Deegwal, and M. M. Sharma, “Miniaturized multi-stubs loaded rectangular monopole antenna for multiband applications based on theory of characteristics modes,” Prog. Electromagnet. Res. C, Vol. 92, pp. 177–189, 2019. http://dx.doi.org/10.2528/PIERC19022009
  • [19] G. Farhad, P. Kevin, and A. S. Mohan, “Design of a UWB printed g-shaped monopole antenna using characteristic modes,” in Proc. 2014 Int. Wor. Antenna Technol., 2014, pp. 332-335. https://doi.org/10.1109/IWAT.2014.6958679
  • [20] H. J. Adamu, A. Anas, S. Salisu, S. Sani, T. U. Aliyu, and O. O, Mohammed, “Modal analysis of a circular slot monopole antenna for UWB application,” ELEKTRIKA - J. Electrical Eng., Vol. 18, no. 3, pp. 34-43, 2019. http://dx.doi.org/10.11113/elektrika.v18n3.186
  • [21] W. Wu, and Y. P. Zhang, “Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes,” IEEE Antennas Propag. Mag., Vol. 52, no. 6, pp. 67-77, 2010. http://dx.doi.org/10.1109/MAP.2010.5723225
  • [22] Y. K. Chen, and C. F. Wang, “Characteristic modes: theory and applications in antenna engineering,” 2015, Hoboken, NJ, USA: Wiley Publishing. http://dx.doi.org/10.1002/9781119038900
Uwagi
EN
2. Bhaskara Rao Perli and Dr. A. Maheswara Rao wish to express their gratitude to the JNTUA College of Engineering, Ananthapuramu for their continued support and encouragement during this work.
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77e87446-cc1c-4989-b8b7-9d9b5f5b6f33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.